Formal Methods for System Design

Chapter 2: Modeling systems

Mickael Randour

Mathematics Department, UMONS

September 2023

UMONS

Université de Mons

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 0000000000000 0000000000000 0000000000000000 0000000000 0000000000
: :

Transition systems

Comparing TSs: why, how, graph isomorphism,
trace equivalence

Bisimulation

Simulation

Chapter 2: Modeling systems Mickael Randour 1/83

Transition systems Comparing TSs Bisimulation Simulation
©0000000000000000000 0000000000000 OO000000000000000000000000000 OO000000000000000000

H Transition systems

Chapter 2: Modeling systems Mickael Randour 2/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Transition system

get_soda get_beer

Transition system for a (rather stupid) beverage vending machine [BK08].

m Model describing the behavior of a system.
m Directed graphs: vertices = , edges =

m State: current mode of the system, current values of program
variables, current color of a traffic light. ..

m Transition as atomic actions: mode switching, execution of a
program instruction, change of color. ..

Chapter 2: Modeling systems Mickael Randour 3/83

Transition systems Comparing TSs Bisimulation Simulation
00@00000000000000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Formal definition

Definition: Transition system (TS)
Tuple T = (S, Act,—, I, AP, L) with
m S the set of states,
m Act the set of actions,

—C 8§ x Act x S the transition relation,
I C S the set of initial states,
AP the set of atomic propositions, and

[
[
[
m L: S — 24P the labeling function.

We often consider finite TSs, i.e., |S|,|Act|,|AP| < oo, but not
necessarily true in general.

Notation: sometimes we write s — s’ instead of (s, , s') €—.

Chapter 2: Modeling systems Mickael Randour 4/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 0000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Back to the example

get_soda get_beer

m S = {pay, select, beer, soda},

m Act = {insert_coin, get_beer, get_soda, T},

m Some transitions: pay Insert-coin, select, select = beer.
= [={pay},

What about the labeling?

Chapter 2: Modeling systems Mickael Randour 5/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 0000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Back to the example

get_soda get_beer

Depends on what we want to model!

m Simple choice: Vs, L(s) = {s}.
m Say the property is “the vending machine only delivers a drink
after providing a coin”
— AP = {paid, drink}, L(pay) = 0, L(select) = {paid} and
L(soda) = L(beer) = {paid, drink}.
= useful to model check logic formulae.

Chapter 2: Modeling systems Mickael Randour 5/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 0000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Back to the example

get_soda get_beer

< When the labeling is not important, we often omit it.

< We do the same for actions or simply use /nternal actions (7).

Actions are often used to model communication mechanism
(e.g., parallel processes).

Chapter 2: Modeling systems Mickael Randour 5/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 0000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Related models

We talk about transition systems (TSs) and adopt the definition
of [BKO08]. Equivalent models are often used in the literature.

m Kripke structure (KS5) ~ TS without labels on actions.

m [abeled transition system (LTS) ~ TS without labels on
states.

Chapter 2: Modeling systems Mickael Randour 6/83

Transition systems Comparing TSs Bisimulation Simulation
00000@00000000000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Semantics of TSs: non-determinism

get_soda get_beer

When two actions are possible (select), the choice is made
non-deterministically!

Also true for the initial state if |I| > 1.
— Meaningful to model interleaving of || executions for example.

< Also for abstraction or to model an uncontrollable environment
(here, drink choice by the user).

Chapter 2: Modeling systems Mickael Randour 7/83

Transition systems Comparing TSs Bisimulation Simulation

000000®0000000000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Basic concepts: predecessors and successors

Let 7 = (S, Act,—,I, AP, L) be a TS. For s € S and a € Act,
we define the following sets.

Direct (a-)successors of s:

Post(s,a) = {s/ €S|s> s/}, Post(s U Post(s, a).
acAct

Direct (c-)predecessors of s:

Pre(s,a):{s’65|8'g>s}, Pre(s U Pre(s, @).
acAct

+ natural extensions to subsets of S.

Chapter 2: Modeling systems Mickael Randour 8/83

Transition systems Comparing TSs Bisimulation Simulation

0000000 @000000000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Back to the example

get_soda get_beer

Some examples:
m Post(select) = {soda, beer},
m Pre(pay, get_beer) = {beer},
m Post(beer,7) =).

Chapter 2: Modeling systems Mickael Randour 9/83

Transition systems Comparing TSs Bisimulation Simulation

0000000080000 0000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Terminal states

A state s € S is called terminal iff Post(s) = 0.

— For reactive systems, those states should in general be
avoided.

= deadlocks

Chapter 2: Modeling systems Mickael Randour 10/83

Transition systems Comparing TSs Bisimulation Simulation

000000000 e0000000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Basic concepts: executions (1/2)
Let 7 = (S, Act,—, I, AP, L) be a TS.

Finite execution fragment:

o
0 = S001S102 . .. nSy such that sg —> ... =5 s,,.

Infinite execution fragment:

(&% o
p = Sga181Q2 ... such that s; SAAEN siy1 forall i > 0.

Maximal execution fragment:

Fragment that cannot be prolonged.

Initial execution fragment:

Fragment starting in sg € L

Chapter 2: Modeling systems Mickael Randour 11/83

Transition systems Comparing TSs Bisimulation Simulation
000000000000 0000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Basic concepts: executions (2/2)

Initial and maximal execution fragment.

Reachable states:

Reach(T):{seS\Elsoel/\ 50 -5 .. ﬂ>s,,:s}
= Post™(I)

Chapter 2: Modeling systems Mickael Randour 12/83

Transition systems Comparing TSs Bisimulation Simulation
00000000000 e00000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Back to the example

get_soda get_beer

Some examples.

insert_coin T
m p; = pay ———— select — beer

< p1 is an execution.

get_beer insert_coin
7 p 7T e e e

get_beer
—_—

et_beer insert_coin T
m pp = beer g pa select — beer

< pa is not (maximal but not initial).

insert_coin T get_soda
m 03 = pay ———— select — soda =——— pay

< p3 is not (initial but not maximal).

m Reach(T)=S.

Chapter 2: Modeling systems Mickael Randour 13/83

Transition systems Comparing TSs Bisimulation Simulation
00000000000080000000 0000000000000 000000000000 00000000000000000 0000000000000 0000000
: :

Modeling systems

The reference book [BK08] contains different examples illustrating
how to construct formal models from real applications or segments
of program code.

= We survey some of them in the following.

= Focus on concurrency: prone to errors.

Chapter 2: Modeling systems Mickael Randour 14 /83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 e000000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
:

Independent traffic lights on non-intersecting roads

m Concurrency is represented

TrLight,
___________ by interleaving.
> Non-deterministic choice
between activities of
655 Tilight,) simultaneously acting

processes.

> In general, needs to be
complemented with fairness

R .
TrLighty ||| TrLight assumptions.
/ O

green

Interleaving semantics [BK08].

Chapter 2: Modeling systems Mickael Randour 15/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 0e00000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
:

Mutex with semaphores (1/3)

m Program graphs (PGs) retain
conditional transitions.

P; loop forever

(* nonecritical actions *)

T ection < Interleaving must be done at
release this level to deal with shared
. * “itical ¢ H K .

énd oo (* nonecritical actions *) varia b | es.

= Then we consider the TS
PGy : PG, : ,T(PGl H‘ PGz)

Loy>0: Loy>0:

Loy =y-1 Lyr=y—1

Program graphs for
semaphore-based mutex [BK08].

Chapter 2: Modeling systems Mickael Randour 16 /83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 00e0000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Mutex with semaphores (2/3)

PG, ||| PGy :

y=ytt P

[(waity, non;z'itz) l

“
_,[(noncrity, waita)]

Cy>o: y>0: i

fyi=y—1 ‘ - » ‘ y:=y—1:
[(critbnoncrit;) J [(Wal'th Waitz)] [(noncz‘itl,critz)]
(cri 1, wai 2) vy 1 waz 1,cr1 2)

Y 7y+1 y =y+1

PG, ||| PGy for semaphore-based mutex [BK0S].

The TS unfolding will tell us if (crit;, crity) is reachable
(which we want to avoid obviously).

Chapter 2: Modeling systems Mickael Randour 17 /83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 000e000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Mutex with semaphores (3/3)

(n1,n2,y=1)

(w1, n2,y=1) (n1, w2, y=1)

{c1,m2,y=0) (wi, w2, y=1) (n1, c2,y=0)

S

T (PG ||| PGz) for semaphore-based mutex [BK08].

Mutual exclusion is verified:
(c1,¢,y = ...) & Reach(T (PG ||| PGp)).

Chapter 2: Modeling systems Mickael Randour 18/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 000e000 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Mutex with semaphores (3/3)

(

.)

(w1,n2,y=1)

(n1, w2, y=1)

w‘ ~

T (PG ||| PGy) for semaphore-based mutex [BK08].

The scheduling problem in (wi,wy,y = 1) is left open.
— implement a discipline later (LIFO, FIFO, etc) or use an
algorithm solving the issue explicitly: Peterson’s mutex.

Chapter 2: Modeling systems Mickael Randour 18/83

Transition systems

Comparing TSs Bisimulation

Simulation

0000000000000 0000e00 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000

Peterson’s mutex algorithm (1/2)

Py loop forever

: (* noncritical actions *)
(b1 := true; a := 2); (* request *)
wait until (z =1 V —by)

do critical section od

by := false (* release *)

: (* noncritical actions *)
end loop

PG, : PGy :

)

by := true;z := 1

waita

=2V =by

by = true;z := 2

by := false by := false

=1V —by

Program graphs for Peterson’s mutex [BKO0S].

= The value of x determines who will enter the critical section.

Chapter 2: Modeling systems

Mickael Randour 19/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 00000e0 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Peterson’s mutex algorithm (2/2)
R R

/—><n1,n2,x:2) (n1,ng,z =1)
(c1,n2,2 =2)
(wy, ng,: (n1,wy,:

(n1,c0,2=1)

(w1, we,z = 1) (w1, wa, x = 2)

(c1,we,z=1) (w1, e, = 2)

T (PG ||| PG2) for Peterson’s mutex [BK08].

Mutual exclusion is verified:
(c1,c2,x =...) & Reach(T (PG ||| PGp)).

Chapter 2: Modeling systems Mickael Randour 20/83

Transition systems Comparing TSs Bisimulation Simulation

0000000000000 00000e0 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Peterson’s mutex algorithm (2/2)
R R

/—“ml,nz,x:Q} (n1,ng,z =1)
(c1,m2,2 =2)
(u117n2,4 (77«17702 :

(n1,c0,2=1)

(w1, we,z = 1) (w1, wa, x = 2)

(c1,we,z=1) (w1, e, = 2)

T (PG ||| PG2) for Peterson’s mutex [BK08].
Peterson’s also has bounded waiting, hence fairness is satisfied.

Not true for semaphore-based (without discipline): processes

could starve.
Chapter 2: Modeling systems Mickael Randour 20/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 0000000e 0000000000000 0000000000000V 000O000000000000 0000000000000V 000000
:

The state(-space) explosion problem

Verification techniques operate on TSs obtained from programs or
program graphs. Their size can be huge, or they can even be
infinite. Some sources:

]
> PG with 10 locations, three Boolean variables and five integers
in {0,...,9} already contains 10 - 23 - 105 = 8.000.000 states.
> Variable in infinite domain = infinite TS!
]

> T=Tll... 1 Ta = [SI=1[S1]-... - |Sal.

— Exponential blow-up!

= Need for (a lot of) abstraction and efficient symbolic
techniques (Ch. 5) to keep the verification process tractable.

Chapter 2: Modeling systems Mickael Randour 21/83

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 @000000000000 000000000000 00000000000000000 0000000000000 0000000

Comparing TSs: why, how, graph isomorphism,
trace equivalence

Chapter 2: Modeling systems Mickael Randour 22/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0@®00000000000 0000000000000 000000O0000000000 0000000000000 0000000
: :

Why?

m To see if two TSs are similar.
> Is one a or an of the other?

> Are the two indistinguishable w.r.t. observable properties?

m To be able to model check large systems.

> If 71 is a small abstraction of 7, that preserves the property to
be checked, then model checking 77 is more efficient!

< Can help for large or infinite systems: not all complexity is
necessary!
m What does it mean to preserve a property?

> Each type of relation preserves a different logical fragment
(intuitively, a different kind of properties).

< Depends on what we are interested in.

Chapter 2: Modeling systems Mickael Randour 23/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 OO0®0000000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Linear time vs. branching time semantics (1/2)

D
‘ TS T with state labels AP = {a, b}
@’ (state and action names are omitted).

m Linear time semantics deals with traces of executions.

> The language of (in)finite words described by 7.
> See LTL in Ch. 3.
> E.g., do all executions eventually reach (1 7 No.

@—© @
@—0© O——
-@—0 O—w

Chapter 2: Modeling systems Mickael Randour 24 /83

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 OOO®000000000 000000000000 00000000000000000 0000000000000 0000000
: :

Linear time vs. branching time semantics (2/2)

o . m Branching time semantics deals with
the execution tree.

> Infinite unfolding considering all
branching possibilities.

- > See CTL in Ch. 4.

> E.g., do all executions always have the
possibility to eventually reach [} 7 Yes,

< Cannot be expressed as a LT property

-
/af\ (intuitively, requires branching).

@ @ ®

Chapter 2: Modeling systems Mickael Randour 25/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000®00000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Which type of relation between TSs should we use?

m Linear time properties (e.g., LTL)
= is an obvious choice.
A\ But language inclusion is costly! (PSPACE-complete)

< Other relations provide a more efficient alternative
(P-complete).
m Branching time semantics (e.g., CTL)

= . related states can mutually mimic all individual
transitions.

= : one state can mimic all stepwise behaviors of the
other, but the reverse is not necessary.

In the following, we assume state-based labeling and often that
there is no deadlock (~ self-loops otherwise).

Chapter 2: Modeling systems Mickael Randour 26 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 00000@0000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Graph isomorphism (1/2)

Idea: isomorphism up to renaming of the states and actions.

Definition: TS isomorphism

T1 = (S1,Acty,—1, 1, APy, L1) and
To = (Sa2, Acty, —2, Ir, AP», Ly) are isomorphic if there exists a
bijection f such that

m Sy =f(S1),

m Acty = f(Acty),

s S s — f(s) ﬂz (s,

BsE < f(s)€ b,

m AP, = AP,

m Vs e S, Li(s) = La(f(s)).)

Preserves properties but much too restrictive!

Chapter 2: Modeling systems Mickael Randour 27/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 O00000@000000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Graph isomorphism (2/2)

s B

Those TSs are clearly “equivalent” (i.e., indistinguishable for
meaningful properties) but are not isomorphic.

= Graph isomorphism is not interesting for model checking.

Chapter 2: Modeling systems Mickael Randour 28/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000800000 0000000000000V 000O000000000000 0000000000000V 000000
: :

Trace inclusion and trace equivalence (1/6)
What is a trace?

D> An execution seen through its labeling.

Definition: paths and traces

Let 7 = (S, Act,—, I, AP, L) be a TS and p = spa1s1c2 ... one
of its executions:

m its is m = path(p) = sos152.. .,

m its is trace(m) = L(m) = L(so)L(s1)L(s2) ...
We denote Paths(T) (resp. Traces(T)) the set of all paths
(resp. traces) in T.

Defined for executions (i.e., maximal and initial fragments), but
also for fragments starting in a state s (Paths(s) and Traces(s))
or a subset of states S C S (Paths(S’) and Traces(S')), as well
as for finite fragments (Pathsfy, and Tracesgsy,).

Chapter 2: Modeling systems Mickael Randour 29/83

Transition systems Comparing TSs

000000000000 00000000 0000000080000 0000000000000V 000O000000000000 0000000000000V 000000

Bisimulation Simulation

Trace inclusion and trace equivalence (2/6)

Example
m Notice the added self-loop on
D))
m Paths:
m = -O— —O— —O— -
-@—¢) ™= @-0—-0-0-0-0
5= @O @O —

m Corresponding traces:

{a}0{a}0{a}0..
{a}0{a. b}{a, b}{a, b}{a, b} ..
{2}0{a}0{b} (b} ...

Traces are (infinite) words on alphabet

trace(m) =
trace(my) =

trace(ms) =

Chapter 2: Modeling systems

= ({a}0)”

= {a}0{a, b}”
= {a}(?){a}@{b}“’

24P

Mickael Randour 30/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000008000 0000000000000V 000O000000000000 0000000000000V 000000

Trace inclusion and trace equivalence (3/6)
Example (cont'd)

—

Which languages does this TS describe?

-@—@&)

m Finite traces:
Tracesn(T) = {2} (0{a, b} {a})" [¢ | 0({b}"|{a, b}")]
m Traces:
R = (0{a, b}"{a})
Traces(T) = {a}R* [Rw | (0{a, b}*) | @{b}w}

Chapter 2: Modeling systems Mickael Randour 31/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000800 0000000000000V 000O000000000000 0000000000000V 000000
: :

Trace inclusion and trace equivalence (4/6)

Trace inclusion
m Linear-time (LT) properties (e.g., LTL) specify which traces a
TS should exhibit.

m Trace inclusion ~ implementation relation.

< T is seen as a refinement/implementation of the more
abstract model 7.

Theorem: trace inclusion and LT properties

Let 7 and 7' be two TSs without terminal states and with the
same set of propositions AP. The following statements are
equivalent:

(a) Traces(T) C Traces(T")
(b) For any LT property P: T" =P =T E P.

Chapter 2: Modeling systems Mickael Randour 32/83

Transition systems Comparing TSs Bisimulation

Simulation
0000000000000 0000000 0000000000080 0000000000000 000000O0000000000

0000000000000V 000000

Trace inclusion and trace equivalence (5/6)
Trace inclusion (cont’d) and equivalence
Thus, trace inclusion preserves LTL properties.
> Useful when refining systems: automatic proof of correctness
for the refined system.

We can go further and consider trace equivalence.

Theorem: trace equivalence and LT properties

Let 7 and 77 be two TSs without terminal states and with the
same set of propositions AP. Then:

Traces(T) = Traces(T")
)

T and T satisfy the same LT properties.

But, testing trace inclusion/equivalence is costly!
> PSPACE-complete (i.e., in pratice requires exponential time).

Chapter 2: Modeling systems Mickael Randour 33/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000008 000000000000 00000000000000000

0000000000000V 000000

Trace inclusion and trace equivalence (6/6)

Example

Trace-equivalent systems [BKO08].
For AP = {pay, soda, beer}, those TSs are trace-equivalent.

< They are indistinguishable by LT properties.

Chapter 2: Modeling systems Mickael Randour 34 /83

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 0000000000000 @0000000000000000000000000000 0000000000000 0000000

Bisimulation

Chapter 2: Modeling systems Mickael Randour 35/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0@®000000000000000000000000000 0000000000000V 000000
: :

Idea

Identify TSs with the same branching structure.

: T is bisimilar to 7" if both TSs can simulate each
other in a mutual, stepwise manner.

Chapter 2: Modeling systems Mickael Randour 36/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000000000000000 0000000000000V 000000

Definition

Definition: bisimulation equivalence
Let 7; = (S}, Actj,—, I;, AP, L;), i = 1,2, be TSs over AP.
A bisimulation for (71, 72) is a binary relation R C S7 x Sj s.t.
(A) Vsy1 € 1, sy € b, (s1,52) € R and

Vsy €D, ds; € I, (81,52) ER
(B) for all (s1,s2) € R it holds:

(1) Li(s1) = Lo(s2)
(2) i € Post(s1) => (3 sh € Post(sz) A (s}, s5) €R)

(3) sh € Post(sz) => (3 s} € Post(s1) A (s1,s5) €ER).
71 and 7T, are bisimulation-equivalent, or bisimilar, denoted
T1 ~ o, if there exists a bisimulation R for (71, 72).

Chapter 2: Modeling systems Mickael Randour

37/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 0000000000000000 0000000000000 0000000
: :

lllustration
s1 R s9 s1 R s9
1 can be complemented to 1 l
sy s R s
$s1 R s9 51 R s
1 can be complemented to 1 l
85 st R s

Conditions (B.2) and (B.3) of bisimulation equivalence [BKO0S].

Chapter 2: Modeling systems Mickael Randour 38/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000800000000 0000000000000000 0000000000000V 000000
: :

4

{ beer} ° Q {soda}

Bisimilar beverage vending machines [BK08].

Examples

> Intuitively, the additional option to deliver beer in 7> is not
observable by users.

— Equivalence in terms of observable behaviors.

Chapter 2: Modeling systems Mickael Randour 39/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000800000000 0000000000000000 0000000000000V 000000
: :

4

{ beer} e ° {soda}

Bisimilar beverage vending machines [BK08].

Examples

Bisimulation R = {(So, to), (51, tl), (52, tz), (52, t3), (53, t4)}.

— Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 39/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 0000000000000000 0000000000000 0000000
: :

Examples (cont'd)

Non-bisimilar beverage vending machines [BK08].

State s; cannot be mimicked! Candidates are u; and up but they
do not satisfy condition (B.2).

> u; —» soda and uy —+» beer.
> T1 o T3 for AP = {pay, beer, soda}.

Chapter 2: Modeling systems Mickael Randour 40/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000080000000 0000000000000000 0000000000000V 000000
: :

Examples (cont'd)

Non-bisimilar beverage vending machines [BK08].

What if we take a more abstract labeling AP = {pay, drink}?

> L(sp) = L(to) = {pay}, L(s1) = L(u1) = L(up) = 0, all other
labels = {drink}.

Chapter 2: Modeling systems Mickael Randour 40/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000080000000 0000000000000000 0000000000000V 000000
: :

Examples (cont'd)

Non-bisimilar beverage vending machines [BK08].

Then, bisimulation R = {(so, uo), (51, 1), (51, t2), (52, U3), (52, Ug),
(537 U3), (53a U4)}.
> Ti ~ T3 for AP = {pay, drink}.
—> Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 40/83

Transition systems Comparing TSs Bisimulation
0000000000000 0000000 0000000000000 000000@0000000000000000000000

Properties (1/3)

Equivalence

Simulation
0000000000000 0000000

Bisimulation is an equivalence relation

For a fixed set AP of propositions, the bisimulation relation ~ is an
equivalence relation, i.e., it is reflexive, transitive and symmetric.

m Reflexivity: T ~ T.
m Transitivity: T~T AT ~T"= T ~T".
m Symmetry: T ~T' < T ~T.

Chapter 2: Modeling systems Mickael Randour 41/83

Transition systems Comparing TSs Bisimulation

Simulation
0000000000000 0000000 0000000000000

0O000000®000000000000000000000 0000000000000V 000000

Properties (2/3)

Linear-time properties

Bisimulation and trace equivalence

Ti ~ T2 = Traces(Tr) = Traces(Tz2)

— 71 and 7T, satisfy the same LT properties.

— Will be an interesting alternative to trace equivalence
complexity-wise as bisimulation can be checked in polynomial

time.

The converse is false!

< Recall previous example of non-bisimilar beverage vending
machines (same language but not bisimilar).

Chapter 2: Modeling systems Mickael Randour 42/83

Transition systems

Comparing TSs Bisimulation
00000000000000000000

0000000000000

Properties (3/3)

Branching-time properties

Simulation

00000000 @00000000000000000000 0000000000000V 000000

One can show that bisimulation also preserves branching-time
properties (e.g., CTL).

Chapter 2: Modeling systems Mickael Randour 43/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 00000000080 000000000000000000 0000000000000 0000000

Quotienting (1/7)

Idea

dea |
See bisimulation as a relation between states of a single TS.
the TS by this relation.
> Obtain a smaller TS that preserves properties.
Model check the smaller TS.

> More efficient! (quotienting is “cheap” in comparison to model
checking)

Chapter 2: Modeling systems Mickael Randour 44 /83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 000000000 0@000000000000000000 0000000000000 0000000
: :

Quotienting (2/7)

Bisimulation on states

Definition: bisimulation equivalence as a relation on states

Let T = (S, Act,—, I, AP, L) be a TS. A bisimulation for T is a
binary relation R on S x S s.t. for all (s1, s2) € R:

(1) L(s1) = L(s2)

(2) si € Post(s1) = (s, € Post(sz) A (s4,5) €R)

(3) sh € Post(s2) = (s} € Post(s1) A (s}, s5) € R).

States s; and s» are bisimulation-equivalent, or bisimilar, denoted
51 ~7 so, if there exists a bisimulation R for T with (s1, s2) € R.

Remark: equivalent to 71 ~ T with T; =T, =T.

Remark: ~ is the coarsest bisimulation for T (i.e., yielding the
largest R, i.e., the fewer).

Chapter 2: Modeling systems Mickael Randour 45/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000080 0000000000000000 0000000000000 0000000

Quotienting (3/7)

Notations

Let S be a set and R an equivalence on S.
m R-equivalence class of s € S: [s], = {s' € 5| (s,5') € R}.
> Vs € [s]lg, [S]r = [s]%-
® Quotient space of S under R: S/R = {[s]; | s € S}.

> Set of all R-equivalence classes.

Chapter 2: Modeling systems Mickael Randour 46 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 000000000000 ®0000000000000000 0000000000000V 000000
: :

Quotienting (4/7)

Bisimulation quotient

For simplicity, we write ~ for ~7 in the following.

Quotient
Let T = (S, Act,—, I, AP, L) be a TS with (coarsest)
bisimulation ~. The bisimulation quotient of 7 is defined by

T/~=(S)~{r},—',I' AP L)
where:
mI'={[s]_|sel}
mEs S s — [s]. ='[s'].
m L'([s].) = L(s).

It is easily shown that T ~ T/ ~.

Chapter 2: Modeling systems Mickael Randour 47/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000 e000000000000000 0000000000000V 000000
: :

Quotienting (5/7)

[llustration
& @ e)
©
TS T (all labels = () Bisimulation quotient T/ ~

Each color = one R-equivalence class.

—> Blackboard explanation: R is a bisimulation and
quotienting.

Chapter 2: Modeling systems Mickael Randour 48 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000 0e00000000000000 0000000000000V 000000
: :

Quotienting (6/7)

Example: many orinters (1/2)

TS T3 for three printers [BK08].

System composed of n printers with two states: ready and print.

< Entire system T, = Printer ||| ... ||| Printer.

Chapter 2: Modeling systems Mickael Randour 49/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000 0e00000000000000 0000000000000V 000000
: :

Quotienting (6/7)

Example: many orinters (1/2)

TS T3 for three printers [BKOS].

> AP={0,1,...,n} (number of ready printers).
> |Tn| = 2" = exponentiall — let’s quotient it!

Chapter 2: Modeling systems Mickael Randour 49/83

Transition systems Comparing TSs Bisimulation
0000000000000 0000000 0000000000000 0000000000000 00e0000000000000

Quotienting (7/7)

Example: many printers (2/2)

Bisimulation quotient T3/ ~ [BK08].

Simulation
0000000000000 0000000

> R-equivalence classes based on number of available printers.
> |Tn/~| = n+1. = now only linear!

Quotienting can lead to huge gain in the model size while
preserving needed properties.
— powerful abstraction mechanism.

It can even help in reducing infinite TSs to finite quotients. See
bakery algorithm example in the book.

Chapter 2: Modeling systems Mickael Randour 50/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 00e000000000000 0000000000000V 000000
: :

Quotienting algorithm (1/11)

Sketch

Given a TS T = (S, Act,—, I, AP, L), compute its bisimulation
quotient T/ ~.

technique.
< Partition state space S in . pairwise disjoint sets of
states.
Start with a straightforward initial partition.

Refine iteratively up to the point where each block only
contains bisimilar states.

Chapter 2: Modeling systems Mickael Randour 51/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 0000e00000000000 0000000000000 0000000
:

Quotienting algorithm (2/11)
Partitions and blocks
A partition of S is a set Il = {Bj, ..., Bx} such that
m Vi, B £,
m Vi, i#j, BinBj =0
m 5 =U<i<k Bi-

Definition: block and superblock
B; € 11 is called a block. A superblock of IT is a set C C S such
that C = B, U... U B, for some B;,...,B; €1l

| A

\

A partition IT is finer than II" if VB € II, 3B’ € II', BC B’.
< Each block of II' () is the disjoint union of blocks in II.
> Strictly finer if I #£ IT'.

Chapter 2: Modeling systems Mickael Randour 52/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 00000e0000000000 0000000000000 0000000

Quotienting algorithm (3/11)

Partitions and equivalences

m R is an equivalence on S = S /R is a partition of S.

m [I={By,...,Bx} is a partition of S = Ry is an
equivalence relation

Run={(s,8")| 3B €1l, s€ B;As" € B}
={(s:8) | [sln = [s] 1}

] S/RH =1L

Chapter 2: Modeling systems Mickael Randour 53/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 00000e000000000 0000000000000V 000000
: :

Quotienting algorithm (4/11)

Partition-refinement: key steps

Goal: iteratively compute a partition of §.
Initial partition: IIp = II4p = S/Rap with
Rap={(s,5")€ S xS|L(s)=L(s")}
> Group states with identical labels
Repeat 11;. 1 = Refine(1l;) until stabilization.
> Loop invariant: II; is coarser than S/~ and finer than {S}.

Return II;.
> ZSXSQRHOQRHIQRHZQ...QRHI.:N.

Chapter 2: Modeling systems Mickael Randour 54 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000000e00000000 0000000000000V 000000
:

Quotienting algorithm (5/11)

Coarsest partition

S/ ~ is the coarsest partition II of S such that:

(i) I is finer than Iy = 4 p,

(i) VB,B' €1I, BN Pre(B'y =0 Vv B C Pre(B’).
Moreover, if II satisfies (ii), then it is also the case that
BN Pre(C) =0 Vv B C Pre(C) for all blocks B € II and all
superblocks C of II.

Intuitively, (ii) says that if one state in B may lead to B’, then all
of them must also allow it (otherwise they would not be bisimilar).

— The partition-refinement algorithm will lead to the
coarsest partition satisfying (i) and (ii), hence to S/ ~.

Chapter 2: Modeling systems Mickael Randour 55/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 0000000e0000000 0000000000000V 000000
: :

Quotienting algorithm (6/11)

Refinement operator

Definition: refinement operator

Refine(II, C) = g Refine(B, C)
Refine(B, C) = {BN Pre(C), B\ Pre(C)} \ {0}.

block B superblock C
Refinement operator [BK08].

Chapter 2: Modeling systems Mickael Randour 56 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000 000000000e000000 0000000000000V 000000
: :

Quotienting algorithm (7/11)

Refinement operator: properties

Correctness

For II finer than I14p and coarser than S/ ~, we have that:
(a) Refine(I1, C) is finer than II,
(b) Refine(IL, C) is coarser than S/ ~.

Termination criterion

For II finer than II4p and coarser than S/ ~, we have that:

IT is strictly coarser than S/~

)

3 a splitter for II.

—> When no more splitters, we are done: II; = S/ ~.

Chapter 2: Modeling systems Mickael Randour 57/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000000000e00000 0000000000000V 000000
: :

Quotienting algorithm (8/11)

Splitters

Definitions: splitter, stability

Let II be a partition of S and C a superblock of II.
m Cisa of Il if 3 B € II such that

BN Pre(C)#0 A B\ Pre(C) # 0.

m Bellis w.r.t. C if
BN Pre(C)=0 Vv B\ Pre(C) = 0.

m Il is stable w.r.t. C if all B € II are stable w.r.t. C.

Chapter 2: Modeling systems Mickael Randour 58/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000000

0000000000000 00000000000e0000 0000000000000V 000000

Quotienting algorithm (9/11)

Algorithm (sketch)

Input: TS 7 = (S, Act,—, I, AP, L)
Output: bisimulation quotient state space S/~
II = HAP
while 3 a splitter for IT do
choose a splitter C for II
IT := Refine(I1, C) {Refine(Il, C) is strictly finer than IT}
return II

— Blackboard illustration on previous example.

Chapter 2: Modeling systems Mickael Randour 59 /83

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 0000000000000 000000000000 00000000000008000 0000000000000 0000000

Quotienting algorithm (10/11)

[llustration (summary)

TS T (all labels = () Bisimulation quotient T/ ~
n Ho = HAP = {S}
m C =35, 11 = Refine(Il, C) = {{s1, 52, 53, 54, 55}, {s6} }

m C = {s1,52,53, 84,85}, Il .= {{s1, 52, 3}, {54, s5}, {s6}}
m No more splitters — [= 5/~

Chapter 2: Modeling systems Mickael Randour 60 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000000000000e00 0000000000000V 000000
: :

Quotienting algorithm (11/11)

How should we choose splitters?

What is a good splitter candidate for I1; ;17

Simple strategy: use block of II; as candidate.

— Complexity of whole algorithm: O(|S| - (JAP| + M)), with M
the number of edges.

Advanced strategy: use only blocks of II; as
candidates and apply refinement.

— Complexity of whole algorithm: O(|S|-|AP| + M - log|S]),
with M the number of edges.

Chapter 2: Modeling systems Mickael Randour 61/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 00000000000000e0 0000000000000 0000000
: :

Equivalence checking through quotienting (1/2)

Let 71 and 7T, be two TSs. The partition-refinement algorithm can
be used to check if 71 ~ 7>.

Procedure:
Compute the composite TS 7 = 71 & T defined as
T = (S1WS2, Acty U Acty, —1 U —2, 1 U I, AP, L)
with L(s) = Li(s) if s € S;.
Compute S/ ~, the bisimulation quotient space of 7.

Check if, for all bisimulation equivalence class C of T,
CNLH=0 < CnNnh=40.

The answer is Yes if and only if 7; ~ 7>.

Chapter 2: Modeling systems Mickael Randour 62 /83

Transition systems

Comparing TSs Bisimulation
0000000000000 0000000

Simulation
0000000000000

0000000000000V 000O00000000000e 0000000000000V 000000

Equivalence checking through quotienting (2/2)

Complexity
Total complexity:

O((IS1] + |82]) - [AP| + (M1 + Mz) - log(|S1] + [S2]))

where M; is the number of edges of 7;.

= Polynomial-time whereas trace equivalence is
PSPACE-complete.
— Much more efficient!

But recall that:

bisimulation

4K

trace equivalence

—> Sound but incomplete way to check trace equivalence.

Chapter 2: Modeling systems Mickael Randour 63 /83

Transition systems Comparing TSs Bisimulation Simulation
00000000000000000000 0000000000000 000000000000 00000000000000000 @0000000000000000000

Simulation

Chapter 2: Modeling systems Mickael Randour 64 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O@000000000000000000
:

Idea

m Equivalence relation. m Preorder (i.e., reflexive,

m ldentical stepwise behavior. transitive).

m s> simulates sp:
> s can mimic all stepwise
behavior of s1,

> the reverse (s2 < s1) is
not guaranteed.

— s may perform
transitions that s; cannot
match.

Simulation —> implementation relation, e.g., T =< Tr, with 77 an
abstraction of T, i.e., T correctly implements 7.

Chapter 2: Modeling systems Mickael Randour 65 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000000 0000000
: :

Definition

Definition: simulation preorder
Let 7; = (S}, Actj,—, I;, AP, L;), i = 1,2, be TSs over AP.
A simulation for (71, 72) is a binary relation R C S x S> s.t.
(A) V1 € I, ds, € I, (81,82) ER
(B) for all (s1,s2) € R it holds:

(1) Li(s1) = La(s2)

(2) i € Post(s1) = (355 € Post(sz) A (si,s5) €R)
Ty is simulated by 75, or equivalently 75 simulates T, denoted
T1 = T», if there exists a simulation R for (71, 72).

Chapter 2: Modeling systems Mickael Randour 66 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].

Recall that those machines, here called 7 and 7, were shown to be
non-bisimilar before for AP = {pay, beer, soda}.

What about simulation?

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].

The left one simulates the other: 7/ < 7.
R = {(UO, 50)7 (U]_, 51)7 (U2, 51)7 (U3, 52)7 (U4, 53)}

—> Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].

The right one does not simulate the other: 7 £ 7.
— State 51 cannot be mimicked! Candidates are u; and u» but they
do not satisfy condition (B.2).

> up - soda and uy - beer.

> T A T’ for AP = {pay, beer, soda}.

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].

What if we take a more abstract labeling AP = {pay, drink}?

> L(sp) = L(uo) = {pay}, L(s1) = L(u1) = L(w2) = 0, all
others labels = {drink}.

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].
Then, 7/ <7 and 7 =< 7 using

R = {(vo, %0), (u1,51), (U2, 1), (3, 52), (U4, 53) }
and R’ = {(s0, uo), (51, 1), (2, u3), (s3, U3) }

—> Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 O00®0000000000000000
: :

Example

Beverage vending machines [BKO0S].
Then, 7/ <7 and 7 =< 7 using

R = {(vo, %0), (u1,51), (U2, 1), (3, 52), (U4, 53) }
and R’ = {(s0, uo), (51, 1), (2, u3), (s3, U3) }

/\ Error in book: R~ does not work for 7 < 7/ — exercise.

Chapter 2: Modeling systems Mickael Randour 67 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000000 000000
: :

Properties

Simulation is a preorder

For a fixed set AP of propositions, the simulation relation < is
reflexive and transitive.

m Reflexivity: T < T.
m Transitivity: T T AT XT"'"=T=<T".

Chapter 2: Modeling systems Mickael Randour 68 /83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 00000@00000000000000

Abstraction (1/4)
Concept
Let 7 bea TS.

m If 77 is obtained from T by removing transitions (e.g.,
resolving non-determinism), then 7/ < T .

— T is a refinement of T.

m If 77 is obtained from T by abstraction, then 7 <X 7.

Abstraction: idea

Represent a set of concrete states (with identical labels) using a
unique abstract state, through an f:5§—5.

Abstraction function

f: S — S is an abstraction function if
f(s)=f(s') = L(s) = L(s).

Chapter 2: Modeling systems Mickael Randour 69 /83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 000000@0000000000000

Abstraction (2/4)

Usefulness

m From concrete states S to abstract states 3‘ st. |5 <« |S

— Goal: more efficient model checking.

m Useful for data abstraction, predicate abstraction, localization
reduction.

Here, example of an automatic door opener.

> Three-digit code, two errors allowed before alarm.

Chapter 2: Modeling systems Mickael Randour 70/83

Transition systems Comparing TSs Bisimulation
00000000000000000000 0000000000000 0000000000000 0000000000000000

Abstraction (3/4)

Example: automatic door opener (1/2)

Simulation
00000008000000000000

D—C & D

{open }

{alarm)

{alarm }

Abstract TS [BK08].
Automatic door opener [BKOS].

First abstraction: group by number of errors {< 1,2}.
By construction, 7 < 7r.

Chapter 2: Modeling systems Mickael Randour 71/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000000 0000000000000 0000000000000000

00000000 ®00000000000

Abstraction (4/4)

Example: automatic door opener (2/2)

{open}
{alarm}

Abstract TS [BK08].

Automatic door opener [BKOS].

Second abstraction: complete abstraction of the number of errors.

— Coarser abstraction — smaller TS.

By construction, 7 < 7r.

Chapter 2: Modeling systems Mickael Randour 72/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 000000000800 00000000
:

Simulation equivalence

Definition: simulation equivalence
TSs 71 and 75 are simulation-equivalent, or similar, denoted
T =T, if Tt 2T2and T2 X T1.

Simulation is than bisimulation:

=T
¥
Ti~T2

Chapter 2: Modeling systems Mickael Randour 73/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000800 0000000
: :

Example
(s1){a} (t){a}
(e (w)e (D)o
Gojer ()i () (t){e}
Similar but not bisimilar TSs [BKO0S].
Ti~T2

> 7?[j 75: 7?'1 = {(517 tl)a (527 t2)7 (537 t2)7 (547 t3)a (555 t4)}
> To X Ti: Ra ={(t1,51), (t2,53), (t3,54), (ta, S5) }.

—> Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 74/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000800 0000000
: :

Example

(s1){a} (t){a}
O OL (D)o

Similar but not bisimilar TSs [BKO0S].

T =T but T T2

> Only candidate to mimic s is t» but t» — t4 cannot be
mimicked by s;.

— Blackboard proof.

Chapter 2: Modeling systems Mickael Randour 74/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000800 0000000
: :

Example

(s1){a} (t){a}
()o (0o (D)o
Gojer ()i ()1 (t){e)

Similar but not bisimilar TSs [BK08].

T1 ~ T> but 71 % T>. The difference is that:
> For ~, we can use two # relations Ry and R».

> For ~, we need to use the same relation in both directions!

Chapter 2: Modeling systems Mickael Randour 74/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 00000000000 e00000000

Quotienting (1/3)

Idea

As for bisimulation, see simulation as a relation between
states of a single TS.
the TS by this relation.
> Obtain a smaller TS that preserves properties.
Model check the smaller TS.

> More efficient! (quotienting is “cheap” in comparison to model
checking)

Since simulation is coarser than bisimulation, the simulation
quotient will be a better abstraction, i.e., |S/~| < |S/~|.

Still, simulation only preserves a smaller fragment of CTL, while
bisimulation preserves the whole logic.

Chapter 2: Modeling systems Mickael Randour 75/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 000000000000 e0000000
: :

Quotienting (2/3)

Simulation on states

Definition: simulation preorder as a relation on states

Let T = (S, Act,—>,I, AP, L) be a TS. A simulation for T is a
binary relation R on S x S s.t. for all (s1, s2) € R:

(1) L(s1) = L(s2)

(2) s} € Post(s1) = (355 € Post(s2) A (s}, s5) € R).

States s; is simulated by s», or s» simulates s1, denoted s1 =7 3o,

if there exists a simulation R for 7 with (s1, s2) € R. States s1
and s» are similar, denoted s1 ~7 s if s1 <7 s and sy <7 s7.

Remark: <7 is the coarsest simulation for T .

For simplicity, we write < and ~ for <7 and ~7 in the following.

Chapter 2: Modeling systems Mickael Randour 76 /83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000000 eO000000
: :

Quotienting (3/3)

Simulation quotient

Let T = (S, Act,—, I, AP, L) be a TS. The simulation quotient
of 7T is defined by

T/~==(8/~{r},—,I', AP, L)
where:
. I'={[sl.]s €D},

s S s — [s]~ 5 [s']~,
. I(fsl.) = L(s).

It is easily shown that 7 ~ 7T/ ~.

Chapter 2: Modeling systems Mickael Randour 77/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000000V e00000
: :

Algorithm for simulation preorder (1/4)
Goal

Given a TS T = (S, Act,—, I, AP, L), compute the simulation
preorder <7 (the simulation).

> Can be used to compute 7/~ (by looking at states s1, s2
such that s; < s2 and s =< s1).

> Can be used to check whether 71 ~ 75 by computing
T1 @ T2/ ~ as for bisimulation.

Chapter 2: Modeling systems Mickael Randour 78/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 0000000000000 00e0000

Algorithm for simulation preorder (2/4)

Basic idea

Input: TS 7 = (S5, Act,—, [, AP, L)
Output: simulation preorder <1
R = {(s1,52) | L(s1) = L(s2)}
while R is not a simulation do
let (s1,52) € Rs.t. 51— s1 A Ashst. (s2— s5 A (s1,85) €R)
R =R\ {(s1,52)}
return R

Intuitively, we start with the largest possible approximation (i.e.,
identical labels) and

up to obtaining a proper simulation relation.

S|2:

iterations bounded by

SXxSORoCR12D... 2Rn==7

Chapter 2: Modeling systems Mickael Randour 79/83

Transition systems Comparing TSs Bisimulation Simulation

000000000000 00000000 0000000000000 0000000000000V 000O000000000000 0000000000000 000e000
:

Algorithm for simulation preorder (3/4)

Complexity

While straightforward implementation leads to O(M - |S|3), clever
refinements reduce the complexity of the algorithm to O(M - |5]).

— See the book for more details.

— Blackboard illustration for two TSs.

Chapter 2: Modeling systems Mickael Randour 80/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 0000000000000 0000e00

Algorithm for simulation preorder (4/4)

[llustration (summary)

st 0 11 0 T 0
/ \@3

{b} {c} {b} {c}
TS T, TS T
T1 2 T7?
> Ro = {(So, to), (51, tl), (51, t2), (52, t3), (53, t4)}
> R1 = {(s0, o), (51, t2), (52, t3), (53, ta) }
> Ra = {(s0, t0), (52, t3), (53, ta) }, R3 = {(s2, 13), (53, ta) }

Chapter 2: Modeling systems Mickael Randour 81/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000000 0000000000000 0000000000000000

0000000000000 0000e00

Algorithm for simulation preorder (4/4)

[llustration (summary

{a}
t 0 t 0
J
@3

{6} {c}
ST TS T

T 2 T2?
> Rq = {(53, t4)} ==

(50’t0)¢52> 7’1f7d2

Chapter 2: Modeling systems Mickael Randour 81/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000000 0000000000000 0000000000000000

0000000000000 0000e00

Algorithm for simulation preorder (4/4)

[llustration (summary)

'
{a} {a}

s1 ¢ tt =]

O®)
{b} {c} {b} {c}
ST TS5 7T>
T2 = T1?
> Ro = {(to, 50), (t1,51), (t2, 51), (3, 52), (ta, $3)} = =

(to,s0) E2= T2 =T

Chapter 2: Modeling systems Mickael Randour 81/83

Transition systems Comparing TSs Bisimulation Simulation
0000000000000 0000000 0000000000000 0000000000000 000000O0000000000 0000000000000 00000e0
: :

Relations between equivalences: summary

bisimulation equivalence

TS, ~ TS, \

simulation equivalence trace equivalence
TS, ~ TS; Traces(T) = Traces(TSs)

\ finite trace equivalence

Tracesp, (T1) = Tracesg, (TS2)

simulation order trace inclusion
TS, < TS, Traces(Ty) C Traces(TSs)

\ finite trace inclusion /

Tracesfin (T1) C Tracesg (1)

Relation between equivalences and preorders on TSs [BKOS]:
R — R’ means that R is strictly finer than R’ (i.e., it is more
distinctive).
Chapter 2: Modeling systems Mickael Randour 82/83

Transition systems Comparing TSs Bisimulation

Simulation
00000000000000000000 0000000000000

0000000000000V 000O000000000000 0000000000000 000000e
:

Other properties of simulation

If 71 and 7> do not have terminal states:
> Ti X T2 = Traces(T1) C Traces(Tz);
> if T, satisfies a linear-time property (LTL), then 77 also;

>> if 75 satisfies a branching-time property expressible in VCTL
or ACTL (i.e., strict fragments of CTL), then 77 also.

— See book for more.

Chapter 2: Modeling systems Mickael Randour 83/83

References |

@ C. Baier and J.-P. Katoen.

Principles of model checking.

MIT Press, 2008

Chapter 2: Modeling systems

Mickael Randour

84/83

