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Transition system

Transition system for a (rather stupid) beverage vending machine [BK08].

Model describing the behavior of a system.

Directed graphs: vertices = states, edges = transitions.

State: current mode of the system, current values of program
variables, current color of a traffic light. . .

Transition as atomic actions: mode switching, execution of a
program instruction, change of color. . .
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Formal definition

Definition: Transition system (TS)

Tuple T = (S ,Act,−→, I,AP,L) with

S the set of states,

Act the set of actions,

−→⊆ S ×Act× S the transition relation,

I ⊆ S the set of initial states,

AP the set of atomic propositions, and

L : S → 2AP the labeling function.

We often consider finite TSs, i.e., |S |, |Act |, |AP | <∞, but not
necessarily true in general.

Notation: sometimes we write s
α−→ s ′ instead of (s, α, s ′) ∈−→.
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Back to the example

S = {pay, select, beer, soda},
Act = {insert coin, get beer, get soda, τ},

Some transitions: pay
insert coin−−−−−−→ select, select

τ−→ beer.

I = {pay},

What about the labeling?
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Back to the example

Depends on what we want to model!

Simple choice: ∀ s,L(s) = {s}.
Say the property is “the vending machine only delivers a drink
after providing a coin”

↪→ AP = {paid, drink}, L(pay) = ∅, L(select) = {paid} and
L(soda) = L(beer) = {paid, drink}.
⇒ useful to model check logic formulae.
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Back to the example

↪→ When the labeling is not important, we often omit it.

↪→ We do the same for actions or simply use internal actions (τ).

Actions are often used to model communication mechanism
(e.g., parallel processes).
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Related models

We talk about transition systems (TSs) and adopt the definition
of [BK08]. Equivalent models are often used in the literature.

Kripke structure (KS) ∼ TS without labels on actions.

Labeled transition system (LTS) ∼ TS without labels on
states.
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Semantics of TSs: non-determinism

When two actions are possible (select), the choice is made
non-deterministically!

Also true for the initial state if |I | > 1.

↪→ Meaningful to model interleaving of ‖ executions for example.

↪→ Also for abstraction or to model an uncontrollable environment
(here, drink choice by the user).
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Basic concepts: predecessors and successors
Let T = (S ,Act,−→, I,AP,L) be a TS. For s ∈ S and α ∈ Act,
we define the following sets.

Direct (α-)successors of s :

Post(s, α) =
{

s ′ ∈ S | s α−→ s ′
}
, Post(s) =

⋃
α∈Act

Post(s, α).

Direct (α-)predecessors of s :

Pre(s, α) =
{

s ′ ∈ S | s ′ α−→ s
}
, Pre(s) =

⋃
α∈Act

Pre(s, α).

+ natural extensions to subsets of S .
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Back to the example

Some examples:

Post(select) = {soda, beer},

Pre(pay, get beer) = {beer},

Post(beer, τ) = ∅.
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Terminal states

A state s ∈ S is called terminal iff Post(s) = ∅.

↪→ For reactive systems, those states should in general be
avoided.

⇒ deadlocks
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Basic concepts: executions (1/2)

Let T = (S ,Act,−→, I,AP,L) be a TS.

Finite execution fragment:

% = s0α1s1α2 . . . αnsn such that s0
α1−→ . . .

αn−→ sn.

Infinite execution fragment:

ρ = s0α1s1α2 . . . such that s i
αi+1−−→ s i+1 for all i ≥ 0.

Maximal execution fragment:

Fragment that cannot be prolonged.

Initial execution fragment:

Fragment starting in s0 ∈ I.
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Basic concepts: executions (2/2)

Execution:

Initial and maximal execution fragment.

Reachable states:

Reach(T ) =
{

s ∈ S | ∃ s0 ∈ I ∧ s0
α1−→ . . .

αn−→ sn = s
}

= Post∗(I )
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Back to the example

Some examples.

ρ1 = pay
insert coin−−−−−−→ select

τ−→ beer
get beer−−−−−→ pay

insert coin−−−−−−→ . . .
↪→ ρ1 is an execution.

ρ2 = beer
get beer−−−−−→ pay

insert coin−−−−−−→ select
τ−→ beer

get beer−−−−−→ . . .
↪→ ρ2 is not (maximal but not initial).

%3 = pay
insert coin−−−−−−→ select

τ−→ soda
get soda−−−−−→ pay

↪→ %3 is not (initial but not maximal).

Reach(T ) = S .
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Modeling systems

The reference book [BK08] contains different examples illustrating
how to construct formal models from real applications or segments
of program code.

⇒ We survey some of them in the following.

⇒ Focus on concurrency: prone to errors.
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Independent traffic lights on non-intersecting roads

Interleaving semantics [BK08].

Concurrency is represented
by interleaving.

� Non-deterministic choice
between activities of
simultaneously acting
processes.

� In general, needs to be
complemented with fairness
assumptions.
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Mutex with semaphores (1/3)

Program graphs for
semaphore-based mutex [BK08].

Program graphs (PGs) retain
conditional transitions.

↪→ Interleaving must be done at
this level to deal with shared
variables.

⇒ Then we consider the TS
T (PG1 9 PG2).
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Mutex with semaphores (2/3)

PG1 9 PG2 for semaphore-based mutex [BK08].

The TS unfolding will tell us if 〈crit1, crit2〉 is reachable
(which we want to avoid obviously).
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Mutex with semaphores (3/3)

T (PG1 9 PG2) for semaphore-based mutex [BK08].

Mutual exclusion is verified:
〈c1, c2, y = . . . 〉 6∈ Reach(T (PG1 9 PG2)).
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Mutex with semaphores (3/3)

T (PG1 9 PG2) for semaphore-based mutex [BK08].

The scheduling problem in 〈w1,w2, y = 1〉 is left open.
↪→ implement a discipline later (LIFO, FIFO, etc) or use an
algorithm solving the issue explicitly: Peterson’s mutex.
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Peterson’s mutex algorithm (1/2)

Program graphs for Peterson’s mutex [BK08].

⇒ The value of x determines who will enter the critical section.
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Peterson’s mutex algorithm (2/2)

T (PG1 9 PG2) for Peterson’s mutex [BK08].

Mutual exclusion is verified:
〈c1, c2, x = . . . 〉 6∈ Reach(T (PG1 9 PG2)).
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Peterson’s mutex algorithm (2/2)

T (PG1 9 PG2) for Peterson’s mutex [BK08].

Peterson’s also has bounded waiting, hence fairness is satisfied.

Not true for semaphore-based (without discipline): processes
could starve.
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The state(-space) explosion problem

Verification techniques operate on TSs obtained from programs or
program graphs. Their size can be huge, or they can even be
infinite. Some sources:

Variables
� PG with 10 locations, three Boolean variables and five integers

in {0, . . . , 9} already contains 10 · 23 · 105 = 8.000.000 states.
� Variable in infinite domain ⇒ infinite TS!

Parallelism
� T = T1 9 . . . 9 Tn ⇒ |S | = |S 1 | · . . . · |S n |.

↪→ Exponential blow-up!

⇒ Need for (a lot of) abstraction and efficient symbolic
techniques (Ch. 5) to keep the verification process tractable.
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Why?

To see if two TSs are similar.

� Is one a refinement or an abstraction of the other?

� Are the two indistinguishable w.r.t. observable properties?

To be able to model check large systems.

� If T1 is a small abstraction of T2 that preserves the property to
be checked, then model checking T1 is more efficient!

↪→ Can help for large or infinite systems: not all complexity is
necessary!

What does it mean to preserve a property?

� Each type of relation preserves a different logical fragment
(intuitively, a different kind of properties).

↪→ Depends on what we are interested in.
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Linear time vs. branching time semantics (1/2)

{a}

∅

{a, b}

{b}

TS T with state labels AP = {a, b}
(state and action names are omitted).

Linear time semantics deals with traces of executions.

� The language of (in)finite words described by T .

� See LTL in Ch. 3.

� E.g., do all executions eventually reach {b} ? No.

{a} ∅ {a} ∅ {a} ∅

{a} ∅ {a, b} {a, b} {a, b} {a, b}

{a} ∅ {a} ∅ {b}
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Linear time vs. branching time semantics (2/2)

{a}

∅

{a, b}

{b}
Branching time semantics deals with
the execution tree.

� Infinite unfolding considering all
branching possibilities.

� See CTL in Ch. 4.

� E.g., do all executions always have the

possibility to eventually reach {b} ? Yes.

↪→ Cannot be expressed as a LT property
(intuitively, requires branching).

{a}

∅

{a} {b} {a, b}

∅ {a} {a, b}

{a} {b} {a, b} ∅ {a} {a, b}
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Which type of relation between TSs should we use?

Linear time properties (e.g., LTL)

⇒ Trace equivalence/inclusion is an obvious choice.

" But language inclusion is costly! (PSPACE-complete)

↪→ Other relations provide a more efficient alternative
(P-complete).

Branching time semantics (e.g., CTL)

⇒ Bisimulation: related states can mutually mimic all individual
transitions.

⇒ Simulation: one state can mimic all stepwise behaviors of the
other, but the reverse is not necessary.

In the following, we assume state-based labeling and often that
there is no deadlock ( self-loops otherwise).
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Graph isomorphism (1/2)
Idea: isomorphism up to renaming of the states and actions.

Definition: TS isomorphism

T1 = (S 1,Act1,−→1, I1,AP1,L1) and
T2 = (S 2,Act2,−→2, I2,AP2,L2) are isomorphic if there exists a
bijection f such that

S 2 = f (S 1),

Act2 = f (Act1),

s
α−→1 s ′ ⇐⇒ f (s)

f (α)−−→2 f (s ′),

s ∈ I1 ⇐⇒ f (s) ∈ I2,

AP1 = AP2,

∀ s ∈ S 1, L1(s) = L2(f (s)).

Preserves properties but much too restrictive!
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Graph isomorphism (2/2)

{a} {a} {a}

Those TSs are clearly “equivalent” (i.e., indistinguishable for
meaningful properties) but are not isomorphic .

⇒ Graph isomorphism is not interesting for model checking.
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Trace inclusion and trace equivalence (1/6)
What is a trace?

� An execution seen through its labeling.

Definition: paths and traces

Let T = (S ,Act,−→, I,AP,L) be a TS and ρ = s0α1s1α2 . . . one
of its executions:

its path is π = path(ρ) = s0s1s2 . . . ,

its trace is trace(π) = L(π) = L(s0)L(s1)L(s2) . . .

We denote Paths(T ) (resp. Traces(T )) the set of all paths
(resp. traces) in T .

Defined for executions (i.e., maximal and initial fragments), but
also for fragments starting in a state s (Paths(s) and Traces(s))
or a subset of states S ′ ⊆ S (Paths(S ′) and Traces(S ′)), as well
as for finite fragments (Pathsfin and Tracesfin).
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Trace inclusion and trace equivalence (2/6)
Example

{a}

∅

{a, b}

{b}
Notice the added self-loop on {b}

Paths:

π1 =

π2 =

π3 =
Corresponding traces:

trace(π1) = {a}∅{a}∅{a}∅ . . . = ({a}∅)ω

trace(π2) = {a}∅{a, b}{a, b}{a, b}{a, b} . . . = {a}∅{a, b}ω

trace(π3) = {a}∅{a}∅{b}{b} . . . = {a}∅{a}∅{b}ω

Traces are (infinite) words on alphabet 2AP.
↪→ alphabet exponential in |AP |.
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Trace inclusion and trace equivalence (3/6)
Example (cont’d)

{a}

∅

{a, b}

{b}

Which languages does this TS describe?

Finite traces:

Tracesfin(T ) = {a}(∅{a, b}∗{a})∗
[
ε
∣∣ ∅({b}∗|{a, b}∗)]

Traces:

R = (∅{a, b}∗{a})

Traces(T ) = {a}R∗
[
Rω
∣∣ (∅{a, b}ω)

∣∣ ∅{b}ω]
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Trace inclusion and trace equivalence (4/6)
Trace inclusion

Linear-time (LT) properties (e.g., LTL) specify which traces a
TS should exhibit.

Trace inclusion ∼ implementation relation.

Traces(T ) ⊆ Traces(T ′) means T “is a correct implementation of” T ′.
↪→ T is seen as a refinement/implementation of the more

abstract model T ′.

Theorem: trace inclusion and LT properties

Let T and T ′ be two TSs without terminal states and with the
same set of propositions AP. The following statements are
equivalent:

(a) Traces(T ) ⊆ Traces(T ′)
(b) For any LT property P: T ′ |= P =⇒ T |= P.
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Trace inclusion and trace equivalence (5/6)
Trace inclusion (cont’d) and equivalence

Thus, trace inclusion preserves LTL properties.

� Useful when refining systems: automatic proof of correctness
for the refined system.

We can go further and consider trace equivalence.

Theorem: trace equivalence and LT properties

Let T and T ′ be two TSs without terminal states and with the
same set of propositions AP. Then:

Traces(T ) = Traces(T ′)
m

T and T ′ satisfy the same LT properties.

But, testing trace inclusion/equivalence is costly!

� PSPACE-complete (i.e., in pratice requires exponential time).

Chapter 2: Modeling systems Mickael Randour 33 / 83



Transition systems Comparing TSs Bisimulation Simulation

Trace inclusion and trace equivalence (6/6)
Example

Trace-equivalent systems [BK08].
For AP = {pay, soda, beer}, those TSs are trace-equivalent.

↪→ They are indistinguishable by LT properties.
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Idea

Goal

Identify TSs with the same branching structure.

Intuitively : T is bisimilar to T ′ if both TSs can simulate each
other in a mutual, stepwise manner.
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Definition

Definition: bisimulation equivalence

Let Ti = (S i ,Acti ,−→i , Ii ,AP,Li ), i = 1, 2, be TSs over AP.
A bisimulation for (T1, T2) is a binary relation R ⊆ S 1 × S 2 s.t.

(A) ∀ s1 ∈ I1, ∃ s2 ∈ I2, (s1, s2) ∈ R and
∀ s2 ∈ I2, ∃ s1 ∈ I1, (s1, s2) ∈ R

(B) for all (s1, s2) ∈ R it holds:

(1) L1(s1) = L2(s2)
(2) s ′1 ∈ Post(s1) =⇒

(
∃ s ′2 ∈ Post(s2) ∧ (s ′1, s

′
2) ∈ R

)
(3) s ′2 ∈ Post(s2) =⇒

(
∃ s ′1 ∈ Post(s1) ∧ (s ′1, s

′
2) ∈ R

)
.

T1 and T2 are bisimulation-equivalent, or bisimilar, denoted
T1 ∼ T2, if there exists a bisimulation R for (T1, T2).
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Illustration

Conditions (B.2) and (B.3) of bisimulation equivalence [BK08].
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Examples

Bisimilar beverage vending machines [BK08].

� Intuitively, the additional option to deliver beer in T2 is not
observable by users.

↪→ Equivalence in terms of observable behaviors.
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Examples

Bisimilar beverage vending machines [BK08].

Bisimulation R = {(s0, t0), (s1, t1), (s2, t2), (s2, t3), (s3, t4)}.

=⇒ Blackboard proof.
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Examples (cont’d)

Non-bisimilar beverage vending machines [BK08].

State s1 cannot be mimicked! Candidates are u1 and u2 but they
do not satisfy condition (B.2).

� u1 9 soda and u2 9 beer.

� T1 6∼ T3 for AP = {pay, beer, soda}.
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Examples (cont’d)

Non-bisimilar beverage vending machines [BK08].

What if we take a more abstract labeling AP = {pay, drink}?
� L(s0) = L(t0) = {pay}, L(s1) = L(u1) = L(u2) = ∅, all other

labels = {drink}.
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Examples (cont’d)

Non-bisimilar beverage vending machines [BK08].

Then, bisimulation R = {(s0, u0), (s1, u1), (s1, u2), (s2, u3), (s2, u4),
(s3, u3), (s3, u4)}.
� T1 ∼ T3 for AP = {pay, drink}.

=⇒ Blackboard proof.
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Properties (1/3)
Equivalence

Bisimulation is an equivalence relation

For a fixed set AP of propositions, the bisimulation relation ∼ is an
equivalence relation, i.e., it is reflexive, transitive and symmetric.

Reflexivity: T ∼ T .

Transitivity: T ∼ T ′ ∧ T ′ ∼ T ′′ =⇒ T ∼ T ′′.

Symmetry: T ∼ T ′ ⇐⇒ T ′ ∼ T .

=⇒ Exercise.
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Properties (2/3)
Linear-time properties

Bisimulation and trace equivalence

T1 ∼ T2 =⇒ Traces(T1) = Traces(T2)

↪→ T1 and T2 satisfy the same LT properties.

↪→ Will be an interesting alternative to trace equivalence
complexity-wise as bisimulation can be checked in polynomial
time.

The converse is false!

↪→ Recall previous example of non-bisimilar beverage vending
machines (same language but not bisimilar).
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Properties (3/3)
Branching-time properties

One can show that bisimulation also preserves branching-time
properties (e.g., CTL).
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Quotienting (1/7)
Idea

Idea

1 See bisimulation as a relation between states of a single TS.

2 Quotient the TS by this relation.

� Obtain a smaller TS that preserves properties.

3 Model check the smaller TS.

� More efficient! (quotienting is “cheap” in comparison to model
checking)
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Quotienting (2/7)
Bisimulation on states

Definition: bisimulation equivalence as a relation on states

Let T = (S ,Act,−→, I,AP,L) be a TS. A bisimulation for T is a
binary relation R on S × S s.t. for all (s1, s2) ∈ R:

(1) L(s1) = L(s2)

(2) s ′1 ∈ Post(s1) =⇒
(
∃ s ′2 ∈ Post(s2) ∧ (s ′1, s

′
2) ∈ R

)
(3) s ′2 ∈ Post(s2) =⇒

(
∃ s ′1 ∈ Post(s1) ∧ (s ′1, s

′
2) ∈ R

)
.

States s1 and s2 are bisimulation-equivalent, or bisimilar, denoted
s1 ∼T s2, if there exists a bisimulation R for T with (s1, s2) ∈ R.

Remark: equivalent to T1 ∼ T2 with T1 = T2 = T .

Remark: ∼T is the coarsest bisimulation for T (i.e., yielding the
largest R, i.e., the fewer equivalence classes).
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Quotienting (3/7)
Notations

Let S be a set and R an equivalence on S .

R-equivalence class of s ∈ S : [s]R = {s ′ ∈ S | (s, s ′) ∈ R}.
� ∀ s ′ ∈ [s]R, [s ′]R = [s]R.

Quotient space of S under R: S/R = {[s]R | s ∈ S}.
� Set of all R-equivalence classes.
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Quotienting (4/7)
Bisimulation quotient

For simplicity, we write ∼ for ∼T in the following.

Quotient

Let T = (S ,Act,−→, I,AP,L) be a TS with (coarsest)
bisimulation ∼. The bisimulation quotient of T is defined by

T /∼= (S/∼, {τ},−→′, I ′,AP,L′)

where:

I ′ = {[s]∼ | s ∈ I },
s
α−→ s ′ =⇒ [s]∼

τ−→ ′ [s ′]∼,

L′([s]∼) = L(s).

It is easily shown that T ∼ T /∼.
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Quotienting (5/7)
Illustration

s1 s2 s3

s4 s5

s6

TS T (all labels = ∅)

[s1]∼

[s4]∼

[s6]∼

Bisimulation quotient T /∼

Each color = one R-equivalence class.

=⇒ Blackboard explanation: R is a bisimulation and
quotienting.
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Quotienting (6/7)
Example: many printers (1/2)

TS T3 for three printers [BK08].

System composed of n printers with two states: ready and print.

↪→ Entire system Tn = Printer 9 . . . 9 Printer.
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Quotienting (6/7)
Example: many printers (1/2)

TS T3 for three printers [BK08].

� AP = {0, 1, . . . , n} (number of ready printers).

� |Tn| = 2n =⇒ exponential! =⇒ let’s quotient it!
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Quotienting (7/7)
Example: many printers (2/2)

Bisimulation quotient T3/∼ [BK08].

� R-equivalence classes based on number of available printers.

� |Tn/∼ | = n + 1. =⇒ now only linear!

Quotienting can lead to huge gain in the model size while
preserving needed properties.

=⇒ powerful abstraction mechanism.

It can even help in reducing infinite TSs to finite quotients. See
bakery algorithm example in the book.
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Quotienting algorithm (1/11)
Sketch

Goal

Given a TS T = (S ,Act,−→, I,AP,L), compute its bisimulation
quotient T /∼.

Partition-refinement technique.

↪→ Partition state space S in blocks: pairwise disjoint sets of
states.

1 Start with a straightforward initial partition.

2 Refine iteratively up to the point where each block only
contains bisimilar states.
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Quotienting algorithm (2/11)
Partitions and blocks

Definition: partition

A partition of S is a set Π = {B1, . . . ,Bk} such that

∀ i , Bi 6= ∅,
∀ i , j , i 6= j , Bi ∩ Bj = ∅,
S =

⋃
1≤i≤k Bi .

Definition: block and superblock

Bi ∈ Π is called a block. A superblock of Π is a set C ⊆ S such
that C = Bi1 ∪ . . . ∪ Bil for some Bi1 , . . . ,Bil ∈ Π.

A partition Π is finer than Π′ if ∀B ∈ Π, ∃B ′ ∈ Π′, B ⊆ B ′.

↪→ Each block of Π′ (coarser) is the disjoint union of blocks in Π.

� Strictly finer if Π 6= Π′.
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Quotienting algorithm (3/11)
Partitions and equivalences

R is an equivalence on S =⇒ S/R is a partition of S .

Π = {B1, . . . ,Bk} is a partition of S =⇒ RΠ is an
equivalence relation

RΠ = {(s, s ′) | ∃Bi ∈ Π, s ∈ Bi ∧ s ′ ∈ Bi}
= {(s, s ′) | [s]Π =

[
s ′
]
Π
}.

S/RΠ = Π.
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Quotienting algorithm (4/11)
Partition-refinement: key steps

Goal: iteratively compute a partition of S .

1 Initial partition: Π0 = ΠAP = S/RAP with

RAP = {(s, s ′) ∈ S × S | L(s) = L(s ′)}.

� Group states with identical labels =⇒ RAP ⊇∼.

2 Repeat Πi+1 = Refine(Πi ) until stabilization.

� Loop invariant: Πi is coarser than S/∼ and finer than {S}.

3 Return Πi .

� Termination: S × S ⊇ RΠ0 ) RΠ1 ) RΠ2 ) . . . ) RΠi =∼.
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Quotienting algorithm (5/11)
Coarsest partition

Theorem

S/∼ is the coarsest partition Π of S such that:

(i) Π is finer than Π0 = ΠAP,

(ii) ∀B,B ′ ∈ Π, B ∩ Pre(B ′) = ∅ ∨ B ⊆ Pre(B ′).

Moreover, if Π satisfies (ii), then it is also the case that
B ∩ Pre(C ) = ∅ ∨ B ⊆ Pre(C ) for all blocks B ∈ Π and all
superblocks C of Π.

Intuitively, (ii) says that if one state in B may lead to B ′, then all
of them must also allow it (otherwise they would not be bisimilar).

=⇒ The partition-refinement algorithm will lead to the
coarsest partition satisfying (i) and (ii), hence to S/∼.
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Quotienting algorithm (6/11)
Refinement operator

Definition: refinement operator

Refine(Π,C ) =
⋃

B∈Π Refine(B,C ) for C a superblock of Π.

Refine(B,C ) = {B ∩ Pre(C ),B \ Pre(C )} \ {∅}.

Refinement operator [BK08].
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Quotienting algorithm (7/11)
Refinement operator: properties

Correctness

For Π finer than ΠAP and coarser than S/∼, we have that:

(a) Refine(Π,C ) is finer than Π,

(b) Refine(Π,C ) is coarser than S/∼.

Termination criterion

For Π finer than ΠAP and coarser than S/∼, we have that:

Π is strictly coarser than S/∼
m

∃ a splitter for Π.

=⇒ When no more splitters, we are done: Πi = S/∼.
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Quotienting algorithm (8/11)
Splitters

Definitions: splitter, stability

Let Π be a partition of S and C a superblock of Π.

C is a splitter of Π if ∃B ∈ Π such that

B ∩ Pre(C ) 6= ∅ ∧ B \ Pre(C ) 6= ∅.

B ∈ Π is stable w.r.t. C if

B ∩ Pre(C ) = ∅ ∨ B \ Pre(C ) = ∅.

Π is stable w.r.t. C if all B ∈ Π are stable w.r.t. C .
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Quotienting algorithm (9/11)
Algorithm (sketch)

Input: TS T = (S ,Act,−→, I,AP,L)
Output: bisimulation quotient state space S/∼

Π := ΠAP

while ∃ a splitter for Π do
choose a splitter C for Π
Π := Refine(Π,C) {Refine(Π,C) is strictly finer than Π}

return Π

=⇒ Blackboard illustration on previous example.
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Quotienting algorithm (10/11)
Illustration (summary)

s1 s2 s3

s4 s5s4 s5

s6s6

TS T (all labels = ∅)

[s1]∼

[s4]∼

[s6]∼

Bisimulation quotient T /∼

Π0 := ΠAP = {S}

C = S , Π := Refine(Π,C ) =
{
{s1, s2, s3, s4, s5}, {s6}

}
C = {s1, s2, s3, s4, s5}, Π :=

{
{s1, s2, s3}, {s4, s5}, {s6}

}
No more splitters =⇒ Π = S/∼
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Quotienting algorithm (11/11)
How should we choose splitters?

What is a good splitter candidate for Πi+1?

1 Simple strategy : use any block of Πi as candidate.

↪→ Complexity of whole algorithm: O(|S | · (|AP|+ M)), with M
the number of edges.

2 Advanced strategy : use only “smaller” blocks of Πi as
candidates and apply “simultaneous” refinement.

↪→ Complexity of whole algorithm: O(|S | · |AP|+ M · log |S |),
with M the number of edges.

=⇒ See book for more on the advanced strategy.
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Equivalence checking through quotienting (1/2)

Idea

Let T1 and T2 be two TSs. The partition-refinement algorithm can
be used to check if T1 ∼ T2.

Procedure:

1 Compute the composite TS T = T1 ⊕ T2 defined as

T := (S 1 ] S 2,Act1 ∪Act2,−→1 ∪ −→2, I1 ∪ I2,AP,L)

with L(s) = Li (s) if s ∈ S i .

2 Compute S/∼, the bisimulation quotient space of T .

3 Check if, for all bisimulation equivalence class C of T ,

C ∩ I1 = ∅ ⇐⇒ C ∩ I2 = ∅.

4 The answer is Yes if and only if T1 ∼ T2.
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Equivalence checking through quotienting (2/2)
Complexity

Total complexity:

O
(
(|S 1|+ |S 2|) · |AP|+ (M1 + M2) · log(|S 1|+ |S 2|)

)
where Mi is the number of edges of Ti .

=⇒ Polynomial-time whereas trace equivalence is
PSPACE-complete.

=⇒ Much more efficient!

But recall that:

bisimulation
⇓ 6⇑

trace equivalence

=⇒ Sound but incomplete way to check trace equivalence.
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1 Transition systems

2 Comparing TSs: why, how, graph isomorphism,
trace equivalence

3 Bisimulation

4 Simulation
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Idea

Bisimulation s1 ∼ s2.

Equivalence relation.

Identical stepwise behavior.

Simulation s1 � s2.

Preorder (i.e., reflexive,
transitive).

s2 simulates s1:

� s2 can mimic all stepwise
behavior of s1,

� the reverse (s2 � s1) is
not guaranteed.

↪→ s2 may perform
transitions that s1 cannot
match.

Simulation =⇒ implementation relation, e.g., T � Tf , with Tf an
abstraction of T , i.e., T correctly implements Tf .
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Definition

Definition: simulation preorder

Let Ti = (S i ,Acti ,−→i , Ii ,AP,Li ), i = 1, 2, be TSs over AP.
A simulation for (T1, T2) is a binary relation R ⊆ S 1 × S 2 s.t.

(A) ∀ s1 ∈ I1, ∃ s2 ∈ I2, (s1, s2) ∈ R
(B) for all (s1, s2) ∈ R it holds:

(1) L1(s1) = L2(s2)
(2) s ′1 ∈ Post(s1) =⇒

(
∃ s ′2 ∈ Post(s2) ∧ (s ′1, s

′
2) ∈ R

)
T1 is simulated by T2, or equivalently T2 simulates T1, denoted
T1 � T2, if there exists a simulation R for (T1, T2).

Observe that bisimulations are also simulations but not the
opposite.
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Example

Beverage vending machines [BK08].

Recall that those machines, here called T and T ′, were shown to be
non-bisimilar before for AP = {pay, beer, soda}.

What about simulation?
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Example

Beverage vending machines [BK08].

The left one simulates the other: T ′ � T .

R = {(u0, s0), (u1, s1), (u2, s1), (u3, s2), (u4, s3)}

=⇒ Blackboard proof.
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Example

Beverage vending machines [BK08].

The right one does not simulate the other: T 6� T ′.
↪→ State s1 cannot be mimicked! Candidates are u1 and u2 but they
do not satisfy condition (B.2).

� u1 9 soda and u2 9 beer.

� T 6� T ′ for AP = {pay, beer, soda}.
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Example

Beverage vending machines [BK08].

What if we take a more abstract labeling AP = {pay, drink}?
� L(s0) = L(u0) = {pay}, L(s1) = L(u1) = L(u2) = ∅, all

others labels = {drink}.
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Example

Beverage vending machines [BK08].

Then, T ′ � T and T � T ′ using

R = {(u0, s0), (u1, s1), (u2, s1), (u3, s2), (u4, s3)}
and R′ = {(s0, u0), (s1, u1), (s2, u3), (s3, u3)}

=⇒ Blackboard proof.
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Example

Beverage vending machines [BK08].

Then, T ′ � T and T � T ′ using

R = {(u0, s0), (u1, s1), (u2, s1), (u3, s2), (u4, s3)}
and R′ = {(s0, u0), (s1, u1), (s2, u3), (s3, u3)}

" Error in book: R−1 does not work for T � T ′ =⇒ exercise.
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Properties

Simulation is a preorder

For a fixed set AP of propositions, the simulation relation � is
reflexive and transitive.

Reflexivity: T � T .

Transitivity: T � T ′ ∧ T ′ � T ′′ =⇒ T � T ′′.

=⇒ Exercise.
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Abstraction (1/4)
Concept

Let T be a TS.

If T ′ is obtained from T by removing transitions (e.g.,
resolving non-determinism), then T ′ � T .

↪→ T ′ is a refinement of T .

If T ′ is obtained from T by abstraction, then T � T ′.

Abstraction: idea

Represent a set of concrete states (with identical labels) using a
unique abstract state, through an abstraction function f : S → Ŝ .

Abstraction function

f : S → Ŝ is an abstraction function if

f (s) = f (s ′) =⇒ L(s) = L(s ′).
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Abstraction (2/4)
Usefulness

From concrete states S to abstract states Ŝ s.t. |Ŝ |≪ |S |.
↪→ Goal: more efficient model checking.

Useful for data abstraction, predicate abstraction, localization
reduction.

=⇒ See book for formal discussion.

Here, example of an automatic door opener.

� Three-digit code, two errors allowed before alarm.
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Abstraction (3/4)
Example: automatic door opener (1/2)

Automatic door opener [BK08].
Abstract TS [BK08].

First abstraction: group by number of errors {≤ 1, 2}.

By construction, T � Tf .
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Abstraction (4/4)
Example: automatic door opener (2/2)

Automatic door opener [BK08].

Abstract TS [BK08].

Second abstraction: complete abstraction of the number of errors.

↪→ Coarser abstraction =⇒ smaller TS.

By construction, T � Tf .
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Simulation equivalence

Definition: simulation equivalence

TSs T1 and T2 are simulation-equivalent, or similar , denoted
T1 ' T2, if T1 � T2 and T2 � T1.

Simulation is coarser than bisimulation:

T1 ' T2
6⇓ ⇑
T1 ∼ T2

Chapter 2: Modeling systems Mickael Randour 73 / 83



Transition systems Comparing TSs Bisimulation Simulation

Example

Similar but not bisimilar TSs [BK08].

T1 ' T2
� T1 � T2: R1 = {(s1, t1), (s2, t2), (s3, t2), (s4, t3), (s5, t4)}.

� T2 � T1: R2 = {(t1, s1), (t2, s3), (t3, s4), (t4, s5)}.

=⇒ Blackboard proof.
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Example

Similar but not bisimilar TSs [BK08].

T1 ' T2 but T1 6∼ T2
� Only candidate to mimic s2 is t2 but t2 −→ t4 cannot be

mimicked by s2.

=⇒ Blackboard proof.
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Example

Similar but not bisimilar TSs [BK08].

T1 ' T2 but T1 6∼ T2. The difference is that:

� For ', we can use two 6= relations R1 and R2.

� For ∼, we need to use the same relation in both directions!
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Quotienting (1/3)
Idea

Idea

1 As for bisimulation, see simulation as a relation between
states of a single TS.

2 Quotient the TS by this relation.

� Obtain a smaller TS that preserves properties.

3 Model check the smaller TS.

� More efficient! (quotienting is “cheap” in comparison to model
checking)

Since simulation is coarser than bisimulation, the simulation
quotient will be a better abstraction, i.e., |S/' | ≤ |S/∼ |.

Still, simulation only preserves a smaller fragment of CTL, while
bisimulation preserves the whole logic.

=⇒ If sufficient, use the simulation quotient.
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Quotienting (2/3)
Simulation on states

Definition: simulation preorder as a relation on states

Let T = (S ,Act,−→, I,AP,L) be a TS. A simulation for T is a
binary relation R on S × S s.t. for all (s1, s2) ∈ R:

(1) L(s1) = L(s2)

(2) s ′1 ∈ Post(s1) =⇒
(
∃ s ′2 ∈ Post(s2) ∧ (s ′1, s

′
2) ∈ R

)
.

States s1 is simulated by s2, or s2 simulates s1, denoted s1 �T s2,
if there exists a simulation R for T with (s1, s2) ∈ R. States s1
and s2 are similar, denoted s1 'T s2 if s1 �T s2 and s2 �T s1.

Remark: �T is the coarsest simulation for T .

For simplicity, we write � and ' for �T and 'T in the following.
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Quotienting (3/3)
Simulation quotient

Quotient

Let T = (S ,Act,−→, I,AP,L) be a TS. The simulation quotient
of T is defined by

T /'= (S/', {τ},−→′, I ′,AP,L′)

where:

I ′ = {[s]' | s ∈ I },
s
α−→ s ′ =⇒ [s]'

τ−→ ′ [s ′]',

L′([s]') = L(s).

It is easily shown that T ' T /'.
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Algorithm for simulation preorder (1/4)
Goal

Goal

Given a TS T = (S ,Act,−→, I,AP,L), compute the simulation
preorder �T (the coarsest simulation).

� Can be used to compute T /' (by looking at states s1, s2
such that s1 � s2 and s2 � s1).

� Can be used to check whether T1 ' T2 by computing
T1 ⊕ T2/' as for bisimulation.

Chapter 2: Modeling systems Mickael Randour 78 / 83



Transition systems Comparing TSs Bisimulation Simulation

Algorithm for simulation preorder (2/4)
Basic idea

Input: TS T = (S ,Act,−→, I,AP,L)
Output: simulation preorder �T
R := {(s1, s2) | L(s1) = L(s2)}
while R is not a simulation do

let (s1, s2) ∈ R s.t. s1 −→ s ′
1 ∧ @ s ′

2 s.t.
(
s2 −→ s ′

2 ∧ (s ′
1, s ′

2) ∈ R
)

R := R \ {(s1, s2)}
return R

Intuitively, we start with the largest possible approximation (i.e.,
identical labels) and iteratively remove pairs of states that do not
satisfy s1 � s2 up to obtaining a proper simulation relation.

# iterations bounded by |S |2:

S × S ⊇ R0 ( R1 ) . . . ) Rn =�T
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Algorithm for simulation preorder (3/4)
Complexity

While straightforward implementation leads to O(M · |S |3), clever
refinements reduce the complexity of the algorithm to O(M · |S |).

=⇒ See the book for more details.

=⇒ Blackboard illustration for two TSs.
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Algorithm for simulation preorder (4/4)
Illustration (summary)

s0 {a}

s1 ∅

s2

{b}

s3

{c}

TS T1

t0 {a}

t1 ∅ t2 ∅

t3

{b}

t4

{c}

TS T2

T1 � T2?

� R0 = {(s0, t0), (s1, t1), (s1, t2), (s2, t3), (s3, t4)}
� R1 = {(s0, t0), (s1, t2), (s2, t3), (s3, t4)}
� R2 = {(s0, t0), (s2, t3), (s3, t4)}, R3 = {(s2, t3), (s3, t4)}
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Algorithm for simulation preorder (4/4)
Illustration (summary)

s0 {a}

s1 ∅

s2

{b}

s3

{c}

TS T1

t0 {a}

t1 ∅ t2 ∅

t3

{b}

t4

{c}

TS T2

T1 � T2?

� R4 = {(s3, t4)} =�

(s0, t0) 6∈ � =⇒ T1 6� T2
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Algorithm for simulation preorder (4/4)
Illustration (summary)

s0 {a}

s1 ∅

s2

{b}

s3

{c}

TS T1

t0 {a}

t1 ∅ t2 ∅

t3

{b}

t4

{c}

TS T2

T2 � T1?

� R0 = {(t0, s0), (t1, s1), (t2, s1), (t3, s2), (t4, s3)} =�

(t0, s0) ∈� =⇒ T2 � T1
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Relations between equivalences: summary

Relation between equivalences and preorders on TSs [BK08]:
R −→ R′ means that R is strictly finer than R′ (i.e., it is more

distinctive).
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Other properties of simulation

If T1 and T2 do not have terminal states:

� T1 � T2 =⇒ Traces(T1) ⊆ Traces(T2);

� if T2 satisfies a linear-time property (LTL), then T1 also;

� if T2 satisfies a branching-time property expressible in ∀CTL
or ∃CTL (i.e., strict fragments of CTL), then T1 also.

=⇒ See book for more.
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