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LTL Büchi automata LTL model checking

Linear time semantics: a reminder

{a}

∅

{a, b}

{b}

TS T with state labels AP = {a, b}
(state and action names are omitted).

From now on, we assume no terminal state.

Linear time semantics deals with traces of executions.

� The language of infinite words described by T .

� E.g., do all executions eventually reach {b} ? No.

{a} ∅ {a} ∅ {a} ∅

{a} ∅ {a, b} {a, b} {a, b} {a, b}

{a} ∅ {a} ∅ {b} {b}
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that 〈c1, c2, y = . . . 〉 6∈ Reach(T (PG1 9 PG2)) or equiva-
lently that @π ∈ Paths(T ), 〈c1, c2, y = . . . 〉 ∈ π.

↪→ Satisfied.
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

For model checking, we like to use labels and traces.

� AP = {crit1, crit2}, natural labeling.

� Ensure that @σ ∈ Traces(T ), {crit1, crit2} ∈ σ.
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Liveness

Beverage vending machine [BK08] (Ch. 2).

Ensure that the machine delivers a drink infinitely often.

� AP = {paid, drink}, natural labeling.

� ∀σ ∈ Traces(T ), for all position i along σ, label drink must
appear in the future.

=⇒ Will be formalized thanks to LTL.

↪→ Satisfied. Recall we consider infinite executions.
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Liveness

Beverage vending machine [BK08] (Ch. 2).

What if we ask that the machine delivers a beer infinitely often.

� AP = {paid, soda, beer}, natural labeling.

� ∀σ ∈ Traces(T ), for all position i along σ, label beer must
appear in the future.

↪→ Not satisfied. E.g., σ = (∅ {paid} {paid, soda})ω.
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Safety vs. liveness

Informally, safety means “something bad never happens.”

=⇒ Can easily be satisfied by doing nothing!

=⇒ Needs to be complemented with liveness, i.e., “something
good will happen.”

Finite vs. infinite time

Safety is violated by finite executions (i.e., the prefix up to seeing a
bad state) whereas liveness is violated by infinite ones (witnessing
that the good behavior never occurs).

=⇒ For more about the safety/liveness taxonomy, see the
book.
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Different kinds of LT properties
Persistence

{a}

{a}

{a}

{a, c}

{b}

Ensure that a property eventually holds forever.

� E.g., from some point on, a holds but b does not.

↪→ Satisfied. Indeed,

Traces(T ) = {a}
[
{a}ω | ({a} {a, c})ω | {a}+ {b} ({a, c} {a})ω

]
.

=⇒ Ultimately periodic traces where b is false and a is true,
at all steps after some point.
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LTL Büchi automata LTL model checking

Different kinds of LT properties
Fairness (1/4)

TS for semaphore-based mutex [BK08] (Ch. 2).

Ensure that both processes get fair access to the critical section.

What is fairness?
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Different kinds of LT properties
Fairness (2/4)

Different types of fairness constraints.

Unconditional fairness. E.g., “every process gets access
infinitely often.”

Strong fairness. E.g., “every process that requests access
infinitely often gets access infinitely often.”

Weak fairness. E.g., “every process that continuously
requests access from some point on gets access infinitely
often.”

Unconditional =⇒ strong =⇒ weak.
Converse not true in general.

=⇒ All forms can be formalized in LTL.
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Different kinds of LT properties
Fairness (3/4)

TS for semaphore-based mutex [BK08] (Ch. 2).

The semaphore-based mutex is not fair in any sense. We have seen
that starvation is possible. E.g., execution

〈n1, n2, y = 1〉 −→ (〈w1, n2, y = 1〉 −→ 〈w1,w2, y = 1〉 −→ 〈w1, c2, y = 0〉)ω

sees process 1 asking continuously but never getting access (hence
not even weakly fair).

Chapter 3: Linear temporal logic Mickael Randour 10 / 102
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Different kinds of LT properties
Fairness (4/4)

TS for Peterson’s mutex [BK08] (Ch. 2).

Peterson’s mutex is strongly fair. We saw that it has bounded
waiting.

� A process requesting access waits at most one turn.

↪→ Infinitely frequent requests =⇒ infinitely frequent access.
=⇒ Strong fairness.
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LTL Büchi automata LTL model checking

Linear Temporal Logic

LT property

Essentially, a set of acceptable traces over AP.

� Often difficult to describe explicitly.

� Adequate formalism needed for model checking.

=⇒ Linear Temporal Logic (LTL):

propositional logic + temporal operators.

Chapter 3: Linear temporal logic Mickael Randour 12 / 102



LTL Büchi automata LTL model checking

LTL in a nutshell
Atomic propositions a ∈ AP (represented as {a} , {b} , etc).

Boolean combinations of formulae: ¬φ, φ ∧ ψ, φ ∨ ψ.

Temporal operators.

atomic prop. a

{a} arbitrary arbitrary arbitrary arbitrary

next ©φ

φarbitrary arbitrary arbitrary arbitrary

until φUψ

φ ∧ ¬ψφ ∧ ¬ψ ψ arbitrary arbitrary

eventually ♦φ
¬φ¬φ ¬φ φ arbitrary

always �φ
φφ φ φ φ
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LTL Büchi automata LTL model checking

LTL syntax
Core syntax

LTL syntax

Given the set of atomic propositions AP, LTL formulae are formed
according to the following grammar:

φ ::= true | a | φ ∧ ψ | ¬φ | ©φ | φUψ

where a ∈ AP.

" φUψ requires that ψ holds at some point!
(i.e., φ forever does not suffice)
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LTL Büchi automata LTL model checking

LTL syntax
Derived operators

φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ)

φ→ ψ ≡ ¬φ ∨ ψ *implication*

φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ) *equivalence*

φ ⊕ ψ ≡ (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ) *exclusive or*

false ≡ ¬true

♦φ ≡ true Uφ *eventually (or finally)*

�φ ≡ ¬♦¬φ *always (or globally)*

φWψ ≡ (φUψ) ∨�φ *weak until*

φRψ ≡ ¬(¬φU¬ψ) *release*

� Weak until  until that does not require ψ to be reached.

� Release  ψ must hold up to the point where φ releases it, or
forever if φ never holds.
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LTL syntax
Precedence order

Precedence order:

� unary operators before binary ones,

� ¬ and © equally strong,

� U before ∧, ∨ and →.
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LTL Büchi automata LTL model checking

Formalizing LT properties in LTL
Safety

TS for semaphore-based mutex [BK08] (Ch. 2).

� AP = {crit1, crit2}, natural labeling.

� Ensure that @σ ∈ Traces(T ), {crit1, crit2} ∈ σ.

↪→ ¬♦ (crit1 ∧ crit2) or equivalently � (¬crit1 ∨ ¬crit2).
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LTL Büchi automata LTL model checking

Formalizing LT properties in LTL
Liveness

Beverage vending machine [BK08] (Ch. 2).

� AP = {paid, drink}, natural labeling.

� ∀σ ∈ Traces(T ), for all position i along σ, label drink must
appear in the future.

↪→ �♦drink.

=⇒ “infinitely often”
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Formalizing LT properties in LTL
Persistence

{a}

{a}

{a}

{a, c}

{b}

Ensure that a property eventually holds forever.

� E.g., from some point on, a holds but b does not.

↪→ ♦�(a ∧ ¬b).

=⇒ “eventually always”
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LTL Büchi automata LTL model checking

Formalizing LT properties in LTL
Fairness

Assume k processes and AP = {wait1, . . . ,waitk , crit1, . . . , critk}.
Unconditional fairness. E.g., “every process gets access
infinitely often.”

↪→
∧

1≤i≤k �♦criti .

Strong fairness. E.g., “every process that requests access
infinitely often gets access infinitely often.”

↪→
∧

1≤i≤k (�♦waiti → �♦criti ).

Weak fairness. E.g., “every process that continuously
requests access from some point on gets access infinitely
often.”

↪→
∧

1≤i≤k (♦�waiti → �♦criti ).
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LTL Büchi automata LTL model checking

LTL semantics
Over words (1/2)

Given propositions AP and LTL formula φ, the associated LT
property is the language of words:

Words(φ) =
{
σ = A0A1A2 . . . ∈ (2AP)ω | σ |= φ

}
where |= is the smallest relation satisfying:

σ |= true Recall letters are subsets of AP

σ |= a iff a ∈ A0

σ |= φ ∧ ψ iff σ |= φ and σ |= ψ

σ |= ¬φ iff σ 6|= φ

σ |=©φ iff σ[1..] = A1A2 . . . |= φ

σ |= φUψ iff ∃ j ≥ 0, σ[j ..] |= ψ and ∀ 0 ≤ i < j , σ[i ..] |= φ
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LTL Büchi automata LTL model checking

LTL semantics
Over words (2/2)

Other common operators:

σ |= ♦φ iff ∃ j ≥ 0, σ[j ..] |= φ

σ |= �φ iff ∀ j ≥ 0, σ[j ..] |= φ

σ |= �♦φ iff ∀ j ≥ 0, ∃ i ≥ j , σ[i ..] |= φ

σ |= ♦�φ iff ∃ j ≥ 0, ∀ i ≥ j , σ[i ..] |= φ
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LTL Büchi automata LTL model checking

LTL semantics
Over transition systems

Let T = (S ,Act,−→, I,AP,L) be a TS and φ an LTL formula
over AP.

For π ∈ Paths(T ), π |= φ iff trace(π) |= φ.

For s ∈ S , s |= φ iff ∀π ∈ Paths(s), π |= φ.

TS T satisfies φ, denoted T |= φ iff Traces(T ) ⊆Words(φ).

It follows that T |= φ iff ∀ s0 ∈ I, s0 |= φ.
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LTL Büchi automata LTL model checking

Example

{a}

{a}

{a}

{a, c}

{b}

Notice the added initial state.

T 6|= �a T |= ♦�a T |=© (a ∧ ¬c)

T 6|= ♦b T 6|= aU b T |= �(c →© a)

T |= aW b T 6|= b R a T |= �¬c → ¬♦b
T |= �(b → �♦c) T |= b → �c T 6|=© © (b ∨ c) ∨�a

=⇒ Blackboard solution.
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LTL Büchi automata LTL model checking

Semantics of negation
Paths

Negation for paths

For π ∈ Paths(T ) and an LTL formula φ over AP,

π 6|= φ⇐⇒ π |= ¬φ

because Words(¬φ) = (2AP)ω \Words(φ).
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LTL Büchi automata LTL model checking

Semantics of negation
Transition systems

Negation for TSs

For TS T = (S ,Act,−→, I,AP,L) and an LTL formula φ over AP:

T 6|= φ
6⇓ ⇑
T |= ¬φ

We have that T 6|= φ iff Traces(T ) 6⊆Words(φ)

iff Traces(T ) \Words(φ) 6= ∅
iff Traces(T ) ∩Words(¬φ) 6= ∅

But it may be the case that T 6|= φ and T 6|= ¬φ if

Traces(T ) ∩Words(¬φ) 6= ∅ and Traces(T ) ∩Words(φ) 6= ∅.
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LTL Büchi automata LTL model checking

Semantics of negation
Example

{a}

{a}

{a}

{a, c}

{b}

We saw that T 6|= ♦b.

Do we have T |= ¬♦b ≡ �¬b?

=⇒ No. Because trace σ = {a}2{b}({a, c}{a})ω satisfies ♦b.
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LTL Büchi automata LTL model checking

Equivalence of LTL formulae
Definition

Equivalence of LTL formulae

LTL formulae φ and ψ are equivalent, denoted φ ≡ ψ, if

Words(φ) = Words(ψ).

=⇒ Let us review some computational rules.
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LTL Büchi automata LTL model checking

Equivalence of LTL formulae
Duality, idempotence, absorption

Duality.
¬�φ ≡ ♦¬φ
¬♦φ ≡ �¬φ
¬© φ ≡ ©¬φ

Idempotence.
��φ ≡ �φ

♦♦φ ≡ ♦φ
φU (φUψ) ≡ φUψ

(φUψ) Uψ ≡ φUψ

Absorption.
♦�♦φ ≡ �♦φ
�♦�φ ≡ ♦�φ
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LTL Büchi automata LTL model checking

Equivalence of LTL formulae
Distribution

Distribution.

© (φUψ) ≡ (©φ) U (©ψ)

♦(φ ∨ ψ) ≡ ♦φ ∨ ♦ψ
�(φ ∧ ψ) ≡ �φ ∧�ψ

But. . .

♦(φ ∧ ψ) 6≡ ♦φ ∧ ♦ψ
�(φ ∨ ψ) 6≡ �φ ∨�ψ

{a} {b}
T |= ♦a ∧ ♦b but T 6|= ♦(a ∧ b)

T |= �(a ∨ b) but T 6|= �a ∨�b
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LTL Büchi automata LTL model checking

Equivalence of LTL formulae
Expansion laws

Expansion laws (recursive equivalence).

φUψ ≡ ψ ∨ (φ ∧© (φUψ))

♦φ ≡ φ ∨©♦φ
�φ ≡ φ ∧©�φ

=⇒ Blackboard proof for until.
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LTL Büchi automata LTL model checking

Positive normal form (PNF)
Weak-until PNF

Goal

Retain the full expressiveness of LTL but permit only negations of
atomic propositions.

Weak-until PNF for LTL

Given atomic propositions AP, LTL formulae in weak-until positive
normal form are given by:

φ ::= true | false | a | ¬a | φ ∧ ψ | φ ∨ ψ | ©φ | φUψ | φWψ

where a ∈ AP.

=⇒ Gives a normal form for formulae.
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Positive normal form (PNF)
Rewriting to weak-until PNF

To rewrite any LTL formula into weak-until PNF, we push
negations inside:

¬true ; false ¬false ; true

¬¬φ ; φ ¬(φ ∧ ψ) ; ¬φ ∨ ¬ψ
¬© φ ; ©¬φ ¬(φ ∨ ψ) ; ¬φ ∧ ¬ψ
¬♦φ ; �¬φ ¬�φ ; ♦¬φ

¬(φUψ) ; (φ ∧ ¬ψ) W (¬φ ∧ ¬ψ)

≡ (φ ∧ ¬ψ) U (¬φ ∧ ¬ψ) ∨�(φ ∧ ¬ψ)

¬(φWψ) ; (φ ∧ ¬ψ) U (¬φ ∧ ¬ψ)

=⇒ Blackboard example: ¬�((aU b) ∨© c).

=⇒ Solution: ♦ ((a ∧ ¬b) W (¬a ∧ ¬b) ∧©¬c).
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Positive normal form (PNF)
Release PNF

Problem

Rewriting to weak-until PNF may induce an exponential blowup in
the size of the formula (number of operators) because of the
rewrite rule for until.

Solution: release PNF for LTL

Given atomic propositions AP, LTL formulae in release positive
normal form are given by:

φ ::= true | false | a | ¬a | φ ∧ ψ | φ ∨ ψ | ©φ | φUψ | φRψ

where a ∈ AP.

We use the rule: ¬(φUψ) ; ¬φR¬ψ.

=⇒ linear increase in the size of the formula.
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Back to fairness constraints
Reminder

Let φ, ψ be LTL formulae representing that “something is enabled”
(φ) and that “something is granted” (ψ). Recall the three types of
fairness.

Unconditional fairness constraint

ufair = �♦ψ.

Strong fairness constraint

sfair = �♦φ→ �♦ψ.

Weak fairness constraint

wfair = ♦�φ→ �♦ψ.
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Fairness assumptions

Let fair denote a conjunction of such assumptions. It is sometimes
useful to check that all fair executions of a TS satisfy a formula
(in contrast to all of them).

Fair satisfaction

Let φ be an LTL formula and fair an LTL fairness assumption. We
have that T |=fair φ iff

∀σ ∈ Traces(T ) such that σ |= fair, σ |= φ.
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LTL Büchi automata LTL model checking

Example: randomized arbiter for mutex

Mutual exclusion with a randomized arbiter [BK08].

The arbiter chooses who gets access by tossing a coin: probabilities
are abstracted by non-determinism.

Can process 1 access the section infinitely often?

↪→ No, T1 9 Arbiter 9 T2 6|= �♦req1 → �♦crit1 because the
arbiter can always choose tails.
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Example: randomized arbiter for mutex

Mutual exclusion with a randomized arbiter [BK08].

Intuitively, this is unfair : a real coin would lead to this with proba-
bility zero.

=⇒ LTL fairness assumption: �♦heads ∧�♦tails.

↪→ The property is verified on fair executions, i.e.,
T1 9 Arbiter 9 T2 |=fair

∧
i∈{1,2}(�♦reqi → �♦criti ).
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Handling fairness assumptions

Given a formula φ and a fairness assumption fair, we can reduce
|=fair to the classical satisfaction |=.

From |=fair to |=

T |=fair φ ⇐⇒ T |= (fair→ φ).

=⇒ The classical model checking algorithm will suffice.
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1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking
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Why?

Goal

Express languages of infinite words (e.g., Words(φ)) using a finite
automaton.

=⇒ Will be essential to the model checking algorithm for
LTL.
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Finite-state automata
Reminder

Automata describing languages of finite words.

Definition: non-deterministic finite-state automaton (NFA)

Tuple A = (Q ,Σ, δ,Q0,F ) with

Q a finite set of states,

Σ a finite alphabet,

δ : Q × Σ→ 2Q a transition function,

Q0 ⊆ Q a set of initial states,

F ⊆ Q a set of accept (or final) states.
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Finite-state automata
Example

q1 q2 q3
A B

A,B

Q = {q1, q2, q3}, Σ = {A,B}, Q0 = {q1}, F = {q3}.

This automaton is non-deterministic: see letter A on state q1.

Language?

� Finite word σ = A0A1 . . .An ∈ Σ∗. A run for σ is a sequence
q0q1 . . . qn+1 such that q0 ∈ Q0 and for all 0 ≤ i ≤ n,
qi+1 ∈ δ(qi ,Ai ).

� σ ∈ L(A) if there exists a run q0q1 . . . qn+1 for σ such that
qn+1 ∈ F .

↪→ Here, L(A) = (A | B)∗AB, i.e., all words ending by “AB.”
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Finite-state automata
Regular expressions

Recall that NFAs correspond to regular languages, which can be
described by regular expressions.

Syntax

Regular expressions over letters A ∈ Σ are formed by

E ::= ∅ | ε | A | E + E ′ | E .E ′ | E ∗.

Semantics

For regular expression E , language L(E ) ⊆ Σ∗ obtained by

L(∅) = ∅, L(ε) = {ε}, L(A) = {A}, L(E ∗) = L(E )∗,

L(E + E ′) = L(E ) ∪ L(E ′), L(E .E ′) = L(E ).L(E ′), L(E .∅) = ∅.

Syntactic sugar: we often write E | E ′ for E + E ′, E+ for E .E ∗

and we drop the concatenation operator, i.e., EE ′ instead of E .E ′.
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Finite-state automata
DFAs vs. NFAs

Expressiveness

Deterministic FAs (DFAs) are expressively equivalent to NFAs, i.e.,
for any NFA, there exists a DFA recognizing the same language.

=⇒ One can determinize any NFA through subset
construction.

=⇒ With a potentially exponential blowup!

q1 q2 q3
A B

A,B
{q1} {q1, q2} {q1, q3}

A

B

A
B

B A

=⇒ Blackboard illustration.
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ω-regular languages
Definition

Intuitively, extension of regular languages to infinite words.

Syntax

An ω-regular expression G over Σ has the form

G = E1.F
ω
1 + . . . + En.F

ω
n for n > 0

where Ei , Fi are regular expressions over Σ with ε 6∈ L(Fi ).

Semantics

For L ⊆ Σ∗, let Lω = {w1w2w3 . . . | ∀ i ≥ 1, wi ∈ L}.
For G = E1.F

ω
1 + . . . + En.F

ω
n , Lω(G ) ⊆ Σω is given by

Lω(G ) = L(E1).L(F1)ω ∪ . . . ∪ L(En).L(Fn)ω.
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ω-regular languages
Examples

A language L is ω-regular if L = Lω(G ) for some ω-regular
expression G .

Examples for Σ = {A,B}.

� Words with infinitely many A’s: (B∗ A)ω.

� Words with finitely many A’s: (A | B)∗ Bω.

� Empty language: ∅ω (OK because ∅ is a valid regular
expression).

Properties of ω-regular languages

They are closed under union, intersection and complementation.
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ω-regular languages
Counter-example

Not all languages on infinite words are ω-regular.

E.g., L =
{

words on Σ = {A,B} such that A appears infinitely
often with increasingly many B’s between occurrences of A

}
is not.
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Link with LTL?
We know that every LTL formula φ describes a language of infinite
words Words(φ) ⊆ (2AP)ω.
=⇒ We will see that for every LTL formula φ, Words(φ) is

an ω-regular language.

The converse is false!
There exist ω-regular languages that cannot be expressed in LTL.
E.g.,

L =
{
A0A1A2 . . . ∈ (2{a})ω | ∀ i ≥ 0, a ∈ A2i

}
,

the language of infinite words over 2{a} where a must hold in all
even positions.

� ω-regular expression G = ({a} ({a} | ∅))ω.

� Not expressible in LTL. Intuitively, LTL can count up to k ∈ N
(e.g., words with at most k occurrences of “a”) but not
modulo k (e.g., words with “a” every k steps).
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Büchi automata
Definition

Automata describing languages of infinite words.

� ω-regular languages.

Definition: non-deterministic Büchi automaton (NBA)

Tuple A = (Q ,Σ, δ,Q0,F ) with

Q a finite set of states,

Σ a finite alphabet,

δ : Q × Σ→ 2Q a transition function,

Q0 ⊆ Q a set of initial states,

F ⊆ Q a set of accept (or final) states.

Same as before?
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Büchi automata
Acceptance condition

=⇒ The automaton is identical, but the acceptance condition is
different!

Run

A run for an infinite word σ = A0A1 . . . ∈ Σω is a sequence
q0q1 . . . of states such that q0 ∈ Q0 and for all i ≥ 0,
qi+1 ∈ δ(qi ,Ai ).

Accepting run

A run is accepting if qi ∈ F for infinitely many indices i ∈ N.

Accepted language of A
Lω(A) = {σ ∈ Σω | there is an accepting run for σ in A}.
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Büchi automata
Examples

Words with infinitely many A’s: (B∗ A)ω.

q1 q2

A

B

B A

Deterministic Büchi automaton (DBA).

Words with finitely many A’s: (A | B)∗ Bω.

q1 q2
B

A,B B
Non-deterministic Büchi automaton (NBA).

Is there an equivalent DBA?

=⇒ We will see that there is not!

Empty language: ∅ω.

q1

A,B
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Büchi automata
Modeling an ω-regular property

Liveness property: “once a request is provided, eventually a
response shall occur.”

� {req, resp} ⊆ AP for the TS.

� NBA A uses alphabet 2AP.

↪→ Succinct representation of multiple transitions using
propositional logic. E.g., for AP = {a, b},

q
a∨b−−→ q′ stands for q

{a}−−→ q′, q
{b}−−→ q′, and q

{a,b}−−−→ q′.

q1 q2

req ∧ ¬resp

resp

¬req ∨ resp ¬resp
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Büchi automata
NBAs and ω-regular languages

Theorem

The class of languages accepted by NBAs agrees with the class of
ω-regular languages.

=⇒ For any ω-regular property, we can build a corresponding
NBA.

=⇒ For any NBA A, the language Lω(A) is ω-regular.
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From ω-regular expressions to NBAs
Idea

Reminder

An ω-regular expression G over Σ has the form

G = E1.F
ω
1 + . . . + En.F

ω
n for n > 0

where Ei , Fi are regular expressions over Σ with ε 6∈ L(Fi ).

Construction scheme

Use operators on NBAs mimicking operators on ω-regular
expressions:

union of NBAs (E1.F
ω
1 + E2.F

ω
2 ),

ω-operator for NFA (Fω),

concatenation of an NFA and an NBA (E .Fω).
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From ω-regular expressions to NBAs
Union of NBAs (sketch)

Goal

Mimic E1.F
ω
1 +E2.F

ω
2 .

Let A1 = (Q1,Σ, δ1,Q1
0,F

1) and A2 = (Q2,Σ, δ2,Q2
0,F

2) be two
NBAs over the same alphabet with disjoint state spaces.

Union

A1 +A2 = (Q1 ∪Q2,Σ, δ,Q1
0 ∪Q2

0,F
1 ∪ F 2) with δ(q,A) =

δi (q,A) if q ∈ Q i .

=⇒ A word is accepted by A1 +A2 iff it is accepted by (at
least) one of the automata.

=⇒ Lω(A1 +A2) = Lω(A1) ∪ Lω(A2).
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From ω-regular expressions to NBAs
ω-operator for NFA (sketch 1/2)

Goal

Mimic Fω.

Let A = (Q ,Σ, δ,Q0,F ) be an NFA with ε 6∈ L(A).
Example: NFA accepting A∗B. q1 q2

B

A

Step 1. If some initial states of A have incoming transitions or
Q0 ∩ F 6= ∅.

Introduce new initial state qnew 6∈ F .

Add qnew
A−→ q iff q0

A−→ q for some q0 ∈ Q0.

Keep all other transitions of A.

New Q0 = {qnew}.
qnew q1 q2

A B

B

A
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From ω-regular expressions to NBAs
ω-operator for NFA (sketch 2/2)

q1 q2
B

A

qnew q1 q2
A B

B

A

Step 2. Build the NBA A′ as follows.

If q
A−→ q′ ∈ F , then add q

A−→ q0 for all q0 ∈ Q0.

Keep all other transitions of A.

Q ′0 = Q0 and F ′ = Q0.

qnew q1 q2
A B

B

AB

B

↪→ In practice, state q2 is now useless
and can be removed.

=⇒ Lω(A′) = L(A)ω, i.e., this NBA
recognizes (A∗B)ω.
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From ω-regular expressions to NBAs
Concatenation of an NFA and an NBA (1/2)

Goal

Mimic E .Fω.

Let A1 = (Q1,Σ, δ1,Q1
0,F

1) be an NFA and A2 = (Q2,Σ, δ2,
Q2

0,F
2) be an NBA, both over the same alphabet and with

disjoint state spaces.

Example: NFA A1 with L(A1) = (AB)∗ and NBA A2 with
Lω(A2) = (A | B)∗B Aω.

q1 q2

A

B p1 p2
B

A,B A
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From ω-regular expressions to NBAs
Concatenation of an NFA and an NBA (2/2)

q1 q2

A

B p1 p2
B

A,B A

Construction of NBA A = (Q = Q1 ∪Q2,Σ, δ,Q0,F = F 2).

Q0 =

{
Q1

0 if Q1
0 ∩ F 1 = ∅

Q1
0 ∪Q2

0 otherwise

δ(q,A) =


δ1(q,A) if q ∈ Q1 and δ1(q,A) ∩ F 1 = ∅
δ1(q,A) ∪Q2

0 if q ∈ Q1 and δ1(q,A) ∩ F 1 6= ∅
δ2(q,A) if q ∈ Q2

q1 q2 p1 p2

A B

B
B

A,B A =⇒ Lω(A) = L(A1).Lω(A2),
i.e., this NBA recognizes

(AB)∗(A | B)∗B Aω.
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Checking non-emptiness

Criterion for non-emptiness

Let A be an NBA. Then,

Lω(A) 6= ∅
m

∃ q0 ∈ Q0, ∃ q ∈ F , ∃w ∈ Σ∗, ∃ v ∈ Σ+,
q ∈ δ∗(q0,w) ∧ q ∈ δ∗(q, v),

i.e., there is reachable accept state on a cycle.

=⇒ Can be checked in linear time by computing reachable
strongly connected components (SCCs).

=⇒ Important tool for LTL model checking.
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NBAs vs. DBAs

Recall that DFAs are as expressive as NFAs. What about DBAs
w.r.t. NBAs?

NBAs are strictly more expressive than DBAs

There exists no DBA A such that Lω(A) = Lω((A | B)∗Bω).

q1 q2
B

A,B B

Words with finitely many A’s.

=⇒ See the book for the proof. Intuition: by contradiction, if such
a DBA existed, it would accept some words with infinitely many

A’s by exploiting determinism to construct corresponding accepting
runs.
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Is non-determinism really useful for model checking?

Yes. Consider a persistence property of the form “eventually
forever”, i.e., LTL formula φ = ♦�a for AP = {a}.
� Words(φ) = Lω((∅ | {a})∗{a}ω).

� I.e., exactly Lω((A | B)∗Bω) for A = ∅ and B = {a}.

q1 q2
a

true a

=⇒ Not expressible with a DBA.
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Generalized Büchi automata

NBAs describe ω-regular languages.

Several equally expressive variants exist, with different
acceptance conditions: Muller, Rabin, Streett, parity and
generalized Büchi automata (GNBAs).

=⇒ Will help us for LTL model checking.
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LTL Büchi automata LTL model checking

Generalized Büchi automata
Definition

Definition: non-det. generalized Büchi automaton (GNBA)

Tuple G = (Q ,Σ, δ,Q0,F) with

Q a finite set of states,

Σ a finite alphabet,

δ : Q × Σ→ 2Q a transition function,

Q0 ⊆ Q a set of initial states,

F = {F 1, . . . ,F k} ⊆ 2Q (k ≥ 0 and ∀ 0 ≤ i ≤ k , F i ⊆ Q).

Intuition: a GNBA requires to visit each set F i infinitely often.

Chapter 3: Linear temporal logic Mickael Randour 64 / 102
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Generalized Büchi automata
Acceptance condition

Accepting run

A run q0q1 . . . is accepting if for all F ∈ F , qi ∈ F for infinitely
many indices i ∈ N.

Accepted language of G
Lω(G) = {σ ∈ Σω | there is an accepting run for σ in G}.

For k = 0, all runs are accepting. For k = 1, G is a simple NBA.

" Observe the difference between F = ∅ for an NBA (i.e., no run
is accepting) and F = ∅ for a GNBA (i.e., all runs are accepting).
In fact, F = ∅ is equivalent to having F = {Q}.
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Generalized Büchi automata
Modeling an ω-regular property

Liveness property: “both processes are infinitely often in their
critical section.”

� {crit1, crit2} ⊆ AP for the TS.

q1q2 q3

crit2true

truecrit1

true

� F = {{q2}, {q3}}. Both must be visited infinitely often!
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GNBAs vs. NBAs

From GNBA to NBA

For any GNBA G, there exists an equivalent NBA A (i.e.,
Lω(G) = Lω(A)) of size |A| = O(|G| · |F|).

Construction scheme starting from G with F = {F 1, . . . ,F k}.
1 Make k copies of Q arranged in k levels.
2 At level i ∈ {1, . . . , k}, keep all transitions leaving states

q 6∈ F i .
3 At level i ∈ {1, . . . , k}, redirect transitions leaving states

q ∈ F i to level i + 1 (level k + 1 := level 1).
4 Q ′0 = {〈q0, 1〉 | q0 ∈ Q0}, i.e., initial states in level 1; and

F ′ = {〈q, 1〉 | q ∈ F 1}, i.e., final states in level 1.

=⇒ Works because by construction, F ′ can only be visited
infinitely often if the accept states (F i) at every level i are

visited infinitely often.
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GNBAs vs. NBAs
Example

q1q2 q3

crit2true

truecrit1

true

=⇒ Blackboard illustration.

〈q1, 1〉〈q2, 1〉 〈q3, 1〉

〈q1, 2〉〈q2, 2〉 〈q3, 2〉

crit2

truecrit1
truetrue true

crit2true

crit1
true
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1 LTL: a specification language for LT properties

2 Büchi automata: automata on infinite words

3 LTL model checking
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Back to LTL model checking
Decision problem

Definition: LTL model checking problem

Given a TS T and an LTL formula φ, decide if T |= φ or not.

+ if T 6|= φ we would like a counter-example (trace witnessing it).

=⇒ Model checking algorithm via automata-based approach
(Vardi and Wolper, 1986).

Intuition.

� Represent φ as an NBA.

� Use it to try to find a path π in T such that π 6|= φ.

� If one is found, a prefix of it is an error trace. Otherwise,
T |= φ.
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Back to LTL model checking
Key observation

T |= φ iff Traces(T ) ⊆Words(φ)

iff Traces(T ) ∩ ((2AP)ω \Words(φ)) = ∅
iff Traces(T ) ∩Words(¬φ) = ∅
iff Traces(T ) ∩ Lω(A¬φ) = ∅
iff T ⊗ A¬φ |= ♦�¬F

Line 3 uses negation for paths.
Line 4 uses the existence of an NBA for any ω-regular language and
the fact that all LTL formulae describe ω-regular languages.

=⇒ We will see it in the following.

Line 5 reduces the language intersection problem to the
satisfaction of a persistence property over the product TS
T ⊗ A¬φ. The idea is to check that no trace yielded by T will
satisfy the acceptance condition of the NBA A¬φ.
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Overview of the algorithm

Overview of the automata-based approach for LTL model
checking [BK08].
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From LTL to GNBA
Examples

NBA for �(req→ ♦resp).

q1 q2

req ∧ ¬resp

resp

¬req ∨ resp ¬resp

NBA for ♦�a.

q1 q2
a

true a

GNBA for �♦crit1 ∧�♦crit2.

q1q2 q3

crit2true

truecrit1

true
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From LTL to GNBA
Intuition of the construction (1/3)

Goal

For an LTL formula φ, build GNBA Gφ over alphabet 2AP such
that Lω(Gφ) = Words(φ).

Assume φ only contains core operators ∧, ¬, © , U (w.l.o.g.,
see core syntax) and φ 6= true (otherwise, trivial GNBA).

What will be the states of Gφ?

� Let σ = A0A1A2 . . . ∈Words(φ). Idea: “expand” the sets
Ai ⊆ AP with subformulae ψ of φ.

� Obtain σ = B0B1B2 . . . such that

ψ ∈ Bi ⇐⇒ AiAi+1Ai+2 . . . |= ψ.

� σ will be a run for σ in the GNBA Gφ.
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From LTL to GNBA
Intuition of the construction (2/3)

Let φ = aU (¬a ∧ b) and σ = {a} {a, b} {b} . . .
� Letters Bi are subsets of

{a,¬a, b,¬a ∧ b, φ}︸ ︷︷ ︸
subformulae of φ

∪ {¬b,¬(¬a ∧ b),¬φ}.︸ ︷︷ ︸
their negation

� Negations also considered for technical reasons.

A0 = {a} is extended with ¬b, ¬(¬a ∧ b) and φ as they hold
in σ and no other subformula holds.

A1 = {a, b} with ¬(¬a ∧ b) and φ as they hold in σ[1..] and
no others.

A2 = {b} with ¬a, ¬a ∧ b and φ as they hold in σ[2..] and no
others. Etc.

σ = {a,¬b,¬(¬a ∧ b), φ}︸ ︷︷ ︸
B0

{a, b,¬(¬a ∧ b), φ}︸ ︷︷ ︸
B1

{¬a, b,¬a ∧ b, φ}︸ ︷︷ ︸
B2

. . .

=⇒ In practice, this is not done on words, but on the automaton.
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LTL Büchi automata LTL model checking

From LTL to GNBA
Intuition of the construction (3/3)

Sets Bi will be the states of GNBA Gφ.

σ = B0B1B2 . . . is a run for σ in Gφ by construction.

Accepting condition chosen such that σ is accepting if and
only if σ |= φ.

How do we encode the meaning of the logical operators?

� ∧, ¬ and true impose consistent formula sets Bi in the states
(e.g., a and ¬a is not possible).

� © encoded in the transition relation (must be consistent).

� U split according to the expansion law into local condition
(encoded in states) and next-step one (encoded in transitions).

� Meaning of U is the least solution of the expansion law (see
book) =⇒ reflected in the choice of acceptance sets for Gφ.
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From LTL to GNBA
Closure of a formula

Definition: closure of φ

Set closure(φ) consisting of all sub-formulae ψ of φ and their
negation ¬ψ.

E.g., for φ = aU (¬a ∧ b),

closure(φ) = {a,¬a, b,¬b,¬a ∧ b,¬(¬a ∧ b), φ,¬φ}.

↪→ |closure(φ)| = O(|φ|).

Sets Bi are subsets of closure(φ).

But not all subsets are interesting!

=⇒ Restriction to elementary sets.

Intuition: a set B is elementary if there is a path π such that B is
the set of all formulae ψ ∈ closure(φ) with π |= ψ.
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From LTL to GNBA
Elementary sets of formulae

Definition: elementary set

A set of sub-formulae B ⊆ closure(φ) is elementary if:

1 B is logically consistent, i.e., for all φ1 ∧φ2, ψ ∈ closure(φ),

� φ1 ∧ φ2 ∈ B ⇐⇒ φ1 ∈ B ∧ φ2 ∈ B,

� ψ ∈ B =⇒ ¬ψ 6∈ B,

� true ∈ closure(φ) =⇒ true ∈ B.

2 B is locally consistent, i.e., for all φ1 Uφ2 ∈ closure(φ),

� φ2 ∈ B =⇒ φ1 Uφ2 ∈ B,

� φ1 Uφ2 ∈ B ∧ φ2 6∈ B =⇒ φ1 ∈ B.

3 B is maximal, i.e., for all ψ ∈ closure(φ),

� ψ 6∈ B =⇒ ¬ψ ∈ B.

Chapter 3: Linear temporal logic Mickael Randour 78 / 102
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From LTL to GNBA
Elementary sets: examples (1/2)

Let φ = aU (¬a ∧ b):

closure(φ) = {a,¬a, b,¬b,¬a ∧ b,¬(¬a ∧ b), φ,¬φ}.

Is B = {a, b, φ} ⊂ closure(φ) elementary?

↪→ No. Logically and locally consistent but not maximal because
¬a ∧ b ∈ closure(φ), yet ¬a ∧ b 6∈ B and ¬(¬a ∧ b) 6∈ B.

Is B = {a, b,¬a ∧ b, φ} ⊂ closure(φ) elementary?

↪→ No. It is not logically consistent because a ∈ B and
¬a ∧ b ∈ B.

Is B = {¬a,¬b,¬(¬a ∧ b), φ} ⊂ closure(φ) elementary?

↪→ No. Logically consistent but not locally consistent because
φ = aU (¬a ∧ b) ∈ B and ¬a ∧ b 6∈ B but a 6∈ B.
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From LTL to GNBA
Elementary sets: examples (2/2)

Let φ = aU (¬a ∧ b):

closure(φ) = {a,¬a, b,¬b,¬a ∧ b,¬(¬a ∧ b), φ,¬φ}.
All elementary sets?

=⇒ Blackboard construction.

All elementary sets:

B1 = {a, b,¬(¬a ∧ b), φ},
B2 = {a, b,¬(¬a ∧ b),¬φ},
B3 = {a,¬b,¬(¬a ∧ b), φ},
B4 = {a,¬b,¬(¬a ∧ b),¬φ},
B5 = {¬a,¬b,¬(¬a ∧ b),¬φ},
B6 = {¬a, b,¬a ∧ b, φ}.
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From LTL to GNBA
Construction of Gφ (1/2)

For formula φ over AP, let Gφ = (Q ,Σ = 2AP, δ,Q0,F) where:

Q = {B ⊆ closure(φ) | B is elementary},

Q0 = {B ∈ Q | φ ∈ B},

F = {Fφ1 Uφ2 | φ1 Uφ2 ∈ closure(φ)} with

Fφ1 Uφ2 = {B ∈ Q | φ1 Uφ2 6∈ B ∨ φ2 ∈ B}.

Intuition: for any run B0B1B2 . . . , if φ1 Uφ2 ∈ B0, then φ2 must
eventually become true ( ensured by the acceptance condition).

Observe that F = ∅ if no until in φ.
=⇒ All runs are accepting in this case.
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From LTL to GNBA
Construction of Gφ (2/2)

The transition relation δ : Q × 2AP → 2Q is given by:

For A ∈ 2AP and B ∈ Q , if A 6= B ∩AP, then δ(B,A) = ∅.
Intuition: transitions only exist for the set of propositions that are

true in B, i.e., B ∩AP is the only readable letter at state B.

If A = B ∩AP, then δ(B,A) is the set of all elementary sets
of formulae B ′ satisfying

(i) for every ©ψ ∈ closure(φ), ©ψ ∈ B ⇐⇒ ψ ∈ B ′, and

(ii) for every φ1 Uφ2 ∈ closure(φ),

φ1 Uφ2 ∈ B ⇐⇒
(
φ2 ∈ B ∨ (φ1 ∈ B ∧ φ1 Uφ2 ∈ B ′)

)
.

Intuition: (i) and (ii) reflect the semantics of © and U operators,
(ii) is based on the expansion law.
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From LTL to GNBA
Example: φ =© a

closure(φ) = {a,¬a,© a,¬© a}.
=⇒ Blackboard construction of the GNBA + proof.

{a,© a} {a,¬© a}

{¬a,© a} {¬a,¬© a}

a

a

a
a

¬a
¬a

¬a

¬a

Q =
{
{a,© a}, {a,¬© a}, {¬a,© a}, {¬a,¬© a}

}
,

Q0 =
{
{a,© a}, {¬a,© a}

}
,

F = ∅.
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From LTL to GNBA
Example: φ = aU b (1/3)

closure(φ) = {a,¬a, b,¬b, aU b,¬(aU b)}.
=⇒ Blackboard construction of the GNBA.

{a, b, aU b}

{¬a, b, aU b}

{a,¬b, aU b}

{¬a,¬b,¬(aU b)}

{a,¬b,¬(aU b)}
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From LTL to GNBA
Example: φ = aU b (2/3)

Some explanations (see blackboard for more).
Let B1 = {a, b, aU b}, B2 = {¬a, b, aU b}, B3 = {a,¬b, aU b},
B4 = {¬a,¬b,¬(aU b)} and B5 = {a,¬b,¬(aU b)}.
� Q = {B1,B2,B3,B4,B5}, Q0 = {B1,B2,B3}.
� F = {F aU b} =

{
{B1,B2,B4,B5}

}
.

↪→ Gφ is actually a simple NBA.

� Labels omitted for readability (recall label is B ∩AP).

� From B1 (resp. B2), we can go anywhere because aU b is
already fulfilled by b ∈ B1 (resp. B2).

� From B3, we need to go where aU b holds: B1, B2 or B3.

� From B4, we can go anywhere because ¬(aU b) is already
fulfilled by ¬a,¬b ∈ B4.

� From B5, we need to go where ¬(aU b) holds: B4 or B5.
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From LTL to GNBA
Example: φ = aU b (3/3)

{a, b, aU b}

{¬a, b, aU b}

{a,¬b, aU b}

{¬a,¬b,¬(aU b)}

{a,¬b,¬(aU b)}

Sample words/runs:

σ = {a} {a} {b}ω ∈Words(φ) has accepting run
σ = B3B3B

ω
2 in Gφ.

σ = {a}ω 6∈Words(φ) has only one run σ = Bω3 in Gφ and it
is not accepting since B3 6∈ F aU b.
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From LTL to. . . NBA
Construction

Idea: LTL  GNBA  NBA.

Theorem: LTL to NBA

For any LTL formula φ over propositions AP, there exists an NBA
Aφ with Words(φ) = Lω(Aφ) which can be constructed in time
and space 2O(|φ|).

Sketch
1 Construct the GNBA Gφ.

� |closure(φ)| = O(|φ|) and |Q | ≤ 2|closure(φ)| = 2O(|φ|).
� # accepting sets of Gφ = # until-operators in φ ≤ O(|φ|).

2 Construct the NBA Aφ.
� # states of Aφ = |Q |× # accepting sets of Gφ.
� # states of Aφ
≤ 2O(|φ|) · O(|φ|) = 2O(|φ|) · 2log(O(|φ|)) = 2O(|φ|).
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From LTL to. . . NBA
Can we do better? (1/3)

The algorithm presented here is conceptually simple but may lead
to unnecessary large GNBAs (and thus NBAs).

{a,© a} {a,¬© a}

{¬a,© a} {¬a,¬© a}

a

a

a
a

¬a
¬a

¬a

¬a

q1 q2 q3
true a

true

Example: the right NBA also recognizes © a but is smaller .
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LTL Büchi automata LTL model checking

From LTL to. . . NBA
Can we do better? (2/3)

{a, b, aU b}

{¬a, b, aU b}

{a,¬b, aU b}

{¬a,¬b,¬(aU b)}

{a,¬b,¬(aU b)}

q1 q2
b

a true

Example: the right NBA also recognizes aU b but is much smaller .

Can we always do better?
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From LTL to. . . NBA
Can we do better? (3/3)

In practice, there exist more efficient (but more complex)
algorithms in the literature.

Still, the exponential blowup cannot be avoided in the
worst-case!

Theorem: lower bound for NBA from LTL formula

There exists a family of LTL formulae φn with |φn| = O(poly(n))
such that every NBA Aφn for φn has at least 2n states.

=⇒ Proof in the next slides.
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LTL Büchi automata LTL model checking

From LTL to. . . NBA
Lower bound proof (1/2)

Let AP be arbitrary and non-empty , i.e., |2AP| ≥ 2. Let

Ln =
{
A1 . . .AnA1 . . .Anσ | Ai ⊆ AP ∧ σ ∈ (2AP)ω

}
for n ≥ 0.

This language is expressible in LTL, i.e., Ln = Words(φn) for

φn =
∧

a∈AP

∧
0≤i<n

(© ia←→© n+ia).

Polynomial length: |φn| = O(|AP| · n2).

Claim: any NBA A with Lω(A) = Ln has at least 2n states.

Chapter 3: Linear temporal logic Mickael Randour 91 / 102
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From LTL to. . . NBA
Lower bound proof (2/2)

Assume A is such an automaton. Words A1 . . .AnA1 . . .An∅ω
belong to Ln, hence are accepted by A.

� For every word A1 . . .An of length n, A has a state
q(A1 . . .An) which can be reached after consuming A1 . . .An.

� From q(A1 . . .An), it is possible to visit an accept state
infinitely often by reading the suffix A1 . . .An∅ω.

� If A1 . . .An 6= A′1 . . .A
′
n, then

A1 . . .AnA
′
1 . . .A

′
n∅ω 6∈ Ln = Lω(A).

� Therefore, states q(A1 . . .An) are all pairwise different.

� Since each Ai can take 2|AP| different values, the number of
different sequences A1 . . .An of length n is (2|AP|)n ≥ 2n (by
non-emptiness of AP).

� Hence, the NBA has at least 2n states.
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LTL vs. NBAs

What have we learned?

Corollary

Every LTL formula expresses an ω-regular property, i.e., for all LTL
formula φ, Words(φ) is an ω-regular language.

Why? Because LTL can be transformed to NBA and NBAs
coincide with ω-regular languages.

The converse is false!

Recall L =
{
A0A1A2 . . . ∈ (2{a})ω | ∀ i ≥ 0, a ∈ A2i

}
.

q1 q2

a

true

=⇒ There are ω-regular properties not expressible in LTL.

Chapter 3: Linear temporal logic Mickael Randour 93 / 102
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Back to the model checking algorithm for LTL
What do we still need?

T |= φ iff Traces(T ) ⊆Words(φ)

iff Traces(T ) ∩ ((2AP)ω \Words(φ)) = ∅
iff Traces(T ) ∩Words(¬φ) = ∅
iff Traces(T ) ∩ Lω(A¬φ) = ∅
iff T ⊗ A¬φ |= ♦�¬F

It remains to consider the last line.

Two remaining questions:

1 How to compute the product TS T ⊗ A¬φ?

2 How to check persistence, i.e., T ⊗ A¬φ |= ♦�¬F?
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Product of TS and NBA
Definition

Definition: product of TS and NBA

Let T = (S ,Act,−→, I,AP,L) be a TS without terminal states
and A = (Q ,Σ = 2AP, δ,Q0,F ) a non-blocking NBA. Then,
T ⊗ A is the following TS:

T ⊗ A = (S ′,Act,−→′, I ′,AP ′,L′) where

S ′ = S ×Q , AP ′ = Q and L′(〈s, q〉) = {q},

−→′ is the smallest relation such that if s
α−→ t and q

L(t)−−→ p,
then 〈s, q〉 α−→ ′〈t, p〉,

I ′ = {〈s0, q〉 | s0 ∈ I ∧ ∃ q0 ∈ Q0, q0
L(s0)−−−→ q}.
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Product of TS and NBA
Example: simple traffic light

Simple traffic light with two modes: red and green. LTL formula
to check φ = �♦green.

s1 s2

{red} {green}

TS T for the traffic light.

q1 q2 q3
¬green green

true true¬green

NBA A¬φ for ¬φ = ♦�¬green.

=⇒ Blackboard construction of T ⊗ A¬φ.

〈s1, q1〉 〈s1, q2〉 〈s1, q3〉

〈s2, q1〉 〈s2, q2〉 〈s2, q3〉

{q1} {q2} {q3}

{q1} {q2} {q3}
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Persistence checking
Illustration (1/2)

It remains to check T ⊗ A¬φ |= ♦�¬F to see that T |= φ.

〈s1, q1〉 〈s1, q2〉 〈s1, q3〉

〈s2, q1〉 〈s2, q2〉 〈s2, q3〉

{q1} {q2} {q3}

{q1} {q2} {q3}

Here, T ⊗ A¬φ
?

|= ♦�¬F with F = {q2}.

Yes! State 〈s1, q2〉 can be seen at most once, and state
〈s2, q2〉 is not reachable.

=⇒ There is no common trace between T and A¬φ.
=⇒ T |= φ.
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Persistence checking
Illustration (2/2)

Slightly revised traffic light: can switch off to save energy. Same
formula φ (hence same NBA A¬φ).

s1 s2s3

{red} {green}∅

q1 q2 q3
¬green green

true true¬green 〈s1, q1〉 〈s1, q2〉 〈s1, q3〉

〈s2, q1〉 〈s2, q2〉 〈s2, q3〉

〈s3, q1〉 〈s3, q2〉 〈s3, q3〉

{q1} {q2} {q3}

{q1} {q2} {q3}

{q1} {q2} {q3}

Here, T ⊗ A¬φ 6|= ♦�¬F with F = {q2}. See for example path
〈s1, q1〉 (〈s3, q2〉 〈s1, q2〉)ω that visits q2 infinitely often.
=⇒ Path π = (s1s3)ω of T gives trace σ = ({red} ∅)ω which is
accepted by A¬φ (run q1(q2)ω), i.e., σ 6|= φ.
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Persistence checking
Algorithm: cycle detection

As for checking non-emptiness, we reduce the problem to a cycle
detection problem.

Persistence checking and cycle detection

Let T be a TS without terminal states over AP and Φ a
propositional formula over AP, then

T 6|= ♦�Φ
m

∃ s ∈ Reach(T ), s 6|= Φ and s is on a cycle in the graph of T .

In particular, it holds for Φ = ¬F as needed for LTL model
checking (with F the acceptance set of the NBA A¬φ).
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Persistence checking
Algorithmic solutions for cycle detection

1 Compute the reachable SCCs and check if one contains a
state satisfying ¬Φ.

↪→ Linear time but requires to construct entirely the product TS
T ⊗ A¬φ which may be very large (exponential).

2 Another solution: on-the-fly algorithms.

� Construct T and A¬φ in parallel and simultaneously construct
the reachable fragment of T ⊗ A¬φ via nested depth-first
search.

↪→ Construction of the product “on demand”.
↪→ More efficient in practice (used in software solutions such as

Spin).

=⇒ See the book for more.

Still, the complexity of LTL model checking remains high!
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Wrap-up of the automata-based approach

T |= φ iff Traces(T ) ⊆Words(φ)

iff Traces(T ) ∩ ((2AP)ω \Words(φ)) = ∅
iff Traces(T ) ∩Words(¬φ) = ∅
iff Traces(T ) ∩ Lω(A¬φ) = ∅
iff T ⊗ A¬φ |= ♦�¬F

Complexity of this approach

The time and space complexity is O(|T |) · 2O(|φ|).
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Complexity of LTL model checking

Complexity of the model checking problem for LTL

The LTL model checking problem is PSPACE-complete.

=⇒ See the book for a proof by reduction from the
membership problem for polynomial-space deterministic

Turing machines.

Recall that bisimulation and simulation quotienting (Ch. 2)
preserve LTL properties while being computable in

polynomial time: interesting to do before model checking!
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