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Classical MP/TP Window objectives Conclusion

Aim of this talk

1 New family of quantitative objectives, based on MP and TP

2 Convince you of its advantages and usefulness

3 No technical stuff but feel free to check the conference version
(ATVA’13) or the arXiv full version!
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Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

Classical MP and TP games

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si+1)

MP(π) = lim inf
n→∞

1

n
TP(π(n))

→∞

≤ 3

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 2 / 9



Classical MP/TP Window objectives Conclusion

What do we know?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� Long tradition of study. Non-exhaustive selection:
[EM79, ZP96, Jur98, GZ04, GS09, CDHR10, VR11, CRR12]
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Classical MP/TP Window objectives Conclusion

What about multi total-payoff?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� TP and MP look very similar in one-dimension

TP ∼ refinement of MP = 0

� Is it still true in multi-dimension?
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Classical MP/TP Window objectives Conclusion

What about multi total-payoff?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� Unfortunately, no!

It would be nice to have. . .

a decidable objective with the same flavor (some sort of approx.)
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Classical MP/TP Window objectives Conclusion

Is the complexity barrier breakable?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� P membership for the one-dim. case is a long-standing open
problem!

It would be nice to have. . .

an approximation decidable in polynomial time
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Classical MP/TP Window objectives Conclusion

Do we really want to play eternally?

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -

� MP and TP give no timing guarantee: the “good behavior”
occurs at the limit. . .

� Sure, in one-dim., memoryless strategies suffice and provide
bounds on cycles, but what if we are given an arbitrary play?

It would be nice to have. . .

a quantitative measure that specifies timing requirements
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Classical MP/TP Window objectives Conclusion

Window objectives: key idea

Window of fixed size sliding along a play
; defines a local finite horizon

Objective: see a local MP ≥ 0 before hitting the end of the
window

; needs to be verified at every step
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Classical MP/TP Window objectives Conclusion

Window MP, threshold zero, maximal window = 4

Sum

Time
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Classical MP/TP Window objectives Conclusion

Multiple variants

Given lmax ∈ N0, good window GW(lmax) asks for a positive
sum in at most lmax steps (one window, from the first state)

Direct Fixed Window : DFW(lmax) ≡ �GW(lmax)

Fixed Window : FW(lmax) ≡ ♦DFW(lmax)

Direct Bounded Window : DBW ≡ ∃ lmax, DFW(lmax)

Bounded Window : BW ≡ ♦DBW ≡ ∃ lmax, FW(lmax)

Conservative approximations in one-dim.

Any window obj. ⇒ BW ⇒ MP ≥ 0
BW ⇐ MP > 0
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Classical MP/TP Window objectives Conclusion

Results overview
one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size

� For one-dim. games with poly. windows, we are in P

� For multi-dim. games with fixed windows, we are decidable

� Window obj. provide timing guarantees
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Classical MP/TP Window objectives Conclusion

Results overview: advantages
one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size

� For one-dim. games with poly. windows, we are in P

� For multi-dim. games with fixed windows, we are decidable

� Window obj. provide timing guarantees
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Classical MP/TP Window objectives Conclusion

Taste of the proofs ingredients

For those who like it technical, we use

� 2CMs [Min61],
� membership problem for APTMs [CKS81],
� countdown games [JSL08] ,
� generalized reachability [FH10],
� reset nets [DFS98, Sch02, LNO+08],
� . . .

Open question: is bounded window decidable in multi-dim. ?
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Classical MP/TP Window objectives Conclusion

Thanks to the Highlights Team

Check the full version on arXiv! abs/1302.4248

Thanks!

Do not hesitate to discuss with us!
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