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Aim of this talk

Sketch the motivation for the research and give some examples
of the studied problems.
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:

General context

m Verification and synthesis:

> a reactive system to control,
> an interacting environment,
> a specification to enforce.

m Automated controller synthesis via games.

m Strong links between logic and games:

> logic used as specification language,
> model checking via game solving (e.g., parity games for modal
p-calculus).
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Synthesis via two-player graph games
description description specification

model as

a game

.
model as

a winning Can one player guarantee
victory?

objective

Can we decide which one?

How complex his winning
strategy needs to be?

— Simpler is better.

is there a .
winning Can we synthesize one
strategy 7 .
efficiently?

empower system
capabilities strategy
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specification controller
requirements
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From Boolean to quantitative and beyond: an ongoing shift

Boolean view: behavior is either correct or incorrect.
No interpretation of how good it is.
OK for yes-no properties (e.g., no deadlock).
Example: parity games [GTW02, EJS93, Jur98].
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Boolean view: behavior is either correct or incorrect.
No interpretation of how good it is.
OK for yes-no properties (e.g., no deadlock).
Example: parity games [GTWO02, EJS93, Jur98].

I

Quantitative view: rank the , model
Traditionally, only single-criterion models.
OK for energy consumption, response time [CdAHS03, BCHJ09, Ran13].
Example: mean-payoff games [EM79, ZP96, BCD " 11].

!

Multi-criteria view: study interplays and
E.g., response time vs. computing power vs. energy consumption.
Also, consider strategies with richer guarantees.
E.g., average performance vs. worst-case performance.
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Quantitative games on graphs

Graph G = (S, E,w) with w: E - Z

<«
| |

m Deterministic transitions
m Two-player game G = (G, 51, S2)

2 2 > P; states = O
> P, states = [

m Plays have values
> f: Plays(G) = RU {—o0, oo}

Players follow strategies
> A;: Prefs;(G) — D(S)
> Finite memory = stochastic output Moore
machine M(X;) = (Mem, mg, ay, atn)
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Markov decision processes

m MDP P = (G, 51, 5a,A) with A: Sp — D(S)
> P; states = O
> stochastic states =[]

m MDP = game + strategy of P»
> P = G\
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Markov chains

| s MC M = (G,6) with 6: S — D(S)
m MC = MDP + strategy of P;
5 5 = game + both strategies

> M= P[)\l] = G[>\1,>\2]
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Markov chains

MC M = (G,d) with 6: S — D(S)
m MC = MDP + strategy of P;

5 5 = game + both strategies

> M= P[\] = G[A1, A2]

m Event A C Plays(G)
> probability PV (A)

Sinit

m Measurable f: Plays(G) — R U {—o0, co}
> expected value EM (f)
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Winning semantics and decision problems

= Qualitative objectives - ¢ C Plays(G)
> A1 surely winning: ¥ Ay € Ny, Outsg(Sinit, A1, A2) € &
> A1 almost-surely winning: ¥ Ay € Ay, Pgn[if‘l’)‘zl(@ =1
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Winning semantics and decision problems

= Qualitative objectives - ¢ C Plays(G)
> Ay surely winning: ¥ Aa € Ny, Outsg (Sinit; A1, A2) C ¢
> Ay almost-surely winning: ¥ X € Ny, PEM2)(g) = 1

Sinit

m Quantitative objectives - f: Plays(G) - R U {—o0, oo}
> worst-case threshold problem, 1 € Q:
d?7 M\ € /\1,V)\2 S /\27 Ve OUtSG(Sinit,)\l,)\z), f(ﬂ') >

> expected value threshold problem (MDP), v € Q:
A € ALEEM(F) > 0
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Classical qualitative objectives

m Reachg(T) ={m =sps1s2... € Plays(G) |3i €N, s; € T}
m Buchig(T) = {7 = 95152 ... € Plays(G) | Inf(m) N T # 0}

m Parityg = {m = sps15» ... € Plays(G) | Par(m) mod 2 = 0}
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Classical quantitative objectives and value functions

i=n—1

m Total-payoff: TP(m) = liminf w((si, si+1))
n—o0 =0
i=n—1
m Mean-payoff: MP(m) = Ilnrr_1>|or<1)f; z; w((si, si+1))
=

m Shortest path: truncated sum up to first visit of T C S
m Energy: keep the running sum positive at all times
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Single-criterion models - known results

‘ reachability ‘ Biichi ‘ parity
complexity P-c. ‘ UP N coUP
GAMES
P1 mem.
sure sem. pure memoryless
P> mem.
MDPS complexity P-c.
almost-sure sem. P1 mem. pure memoryless
TP | MP | SP | EG
complexity || UPNcoUP | P-c. [ UPNcoUP
GAMES
P1 mem.
worst-case pure memoryless
P> mem.
MDPS complexity P-c.
n/a
expected value P1 mem. pure memoryless

> Simple strategies suffice (no memory, no randomness).
> “Low” complexity but

Synthesis in Multi-Criteria Quantitative Games

: UPNcoUP ~ P ?
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Overview of the Contributions
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Contributions

Refinement

Multi-Dimension Obj.
with Chatterjee & Raskin

Core Model

Quantitative ‘
Games

Extension Extension

Window Objectives Beyond Worst-Case
with Chatterjee, Doyen & Raskin with Bruyeére, Filiot & Raskin

Shift from single-criterion models to multi-criteria ones.
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I/' \ — randomness vs. memory
Core Model
| Quantitative Undecidability

| Games | of multi total-payoff
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Window objectives

Refinement

Multi-Dimension Obj.
with Chatterjee & Raskin

~
,/ \\

| Core Model
/‘ Quantitative \
ya Games |

RN RN
Extension Extension
Window Objectives Beyond Worst-Case
with Chatterjee, Doyen & Raskin with Bruyeére, Filiot & Raskin

Mean-payoff and total-payoff have: limited tractability (¢ P 77
+ multi TP undec.) and no timing guarantee (limit behavior)
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Window objectives

Refinement

Multi-Dimension Obj.
with Chatterjee & Raskin

; i 4 i ‘!/
N
[
i - 3
K. Chatterjee J.-F. Raskin
IST Austria ULB

Alternative objectives
based on sliding windows

/ _ < provide timing guarantees

[\ <> approximate MP and TP

/ < polynomial variant in one-dim.
[ Core Model '\ remains decidable in multi-dim.

A Quantitative

- \ ~ Games |
L. Doyen / / | \ 7 / \

LSV, ENS Cachan AN
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Beyond worst-case synthesis

Refinement

Multi-Dimension Obj.
with Chatterjee & Raskin

Core Model

Quantitative ‘
Games

Extension Extension
Window Objectives Beyond Worst-Case
with Chatterjee, Doyen & Raskin with Bruyeére, Filiot & Raskin

Framework for the analysis of performance trade-offs w.r.t. the
nature of the environment.
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Beyond worst-case synthesis

Refinement

Multi-Dimension Obj.
with Chatterjee & Raskin

Combination of two views:
games and MDPs

V. Bruyere E. Filiot
UMONS uLB

Core Model \‘\.

& s’ ) : \
] % Quantitative |
AR \ Games |
J.-F. Raskin \ /
uLB
Extension Extension
Window Objectives Beyond Worst-Case
with Chatterjee, Doyen & Raskin with Bruyére, Filiot & Raskin

Framework for the analysis of performance trade-offs w.r.t. the
nature of the environment.
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— guarantees on worst-case — optimize expected value
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Beyond worst-case synthesis

Games MDPs
— antagonistic adversary — stochastic adversary
— guarantees on worst-case — optimize expected value

A
!

BWOC synthesis
— ensure both

’ N

e
,/
,l
4
Mean-Payoff Stud:ed' Shortest Path
value functions
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Example: going to work (shortest path)

> Weights = minutes

> Goal: minimize our expected
time to reach “work”

> But, important meeting in
one hour! Requires strict
guarantees on the
worst-case reaching time.

back home
2

station

1
10

waiting
room
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Example: going to work (shortest path)

| > Optimal expectation
strategy: take the car.

m E =33 WC=71>60.

> Optimal worst-case strategy:

) bicycle.
back home bicycle )
2 45 m L= WC =45 <60.
waiting
room
Synthesis in Multi-Criteria Quantitative Games Mickael Randour
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Example: going to work (shortest path)

> Optimal expectation
strategy: take the car.

m E =33,
> Optimal worst-case strategy:
) bicycle.
back home bicycle
2 station 45 n < 60.

o > Sample BWC strategy: try
train up to 3 delays then
switch to bicycle.

m E ~ 37.45 WC = 58 < 60.

m Optimal E under WC
constraint

m Uses finite

waiting
room
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BWC synthesis: overview

= Mean-payoff

‘ worst-case ‘ expected value BWC
complexity NP N coNP | P-c. NP N coNP
memory pure memoryless pure pseudo-poly.

> Additional modeling power for free!

> Constructing correct strategies require careful analysis and is
technically involved.
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:

BWC synthesis: overview

= Mean-payoff

‘ worst-case ‘ expected value BWC
complexity || NP NcoNP | P-c. NP N coNP
memory pure memoryless pure pseudo-poly.

> Additional modeling power for free!

> Constructing correct strategies require careful analysis and is
technically involved.

m Shortest path

worst-case expected value BWC
complexity P-c. pseudo-poly./NP-hard
memory pure memoryless pure pseudo-poly.

> Problem inherently harder than worst-case and expectation.
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Conclusion and future work

Key idea

We need innovative models to encompass the complexity of
practical applications: trade-offs, strategies with rich guarantees. . .

Some challenges:
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Conclusion and future work

Key idea

We need innovative models to encompass the complexity of
practical applications: trade-offs, strategies with rich guarantees. . .

Some challenges:
> Further extend our frameworks.
— Example: complex strategy profiling in multi-objective MDPs
through percentile queries [RRS15a, RRS15b].
> Full-fledged tool support.
< Some results led to integration in Acacia+ [BBFR13] and
UPPAAL [DJL"14].

> Mixed objectives.
> Work toward a unifying meta-framework.
< Seems difficult in full generality but still room to extract
common underlying principles to instantiate in specific settings.
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Thank you!

Any question?
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Multi-dimension games

EG | MP ] MP TP | TP |
complexity NP N coNP
one-dim. P1 mem.
Py men. pure memoryless
complexity coNP-c. NP N coNP undec.
k-dim. P1 mem. pure finite | pure infinite
P> mem. pure memoryless )

Randomness instead of memory?

‘ Multi EG and EG parity ‘ Multi MP (parity) ‘ MP parity ‘

one-player

X

A

A

two-player

X

X

v
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Window objectives

one-dimension k-dimension
complexity P1 mem. ‘ P> mem. complexity P1 mem. P> mem.
MP / MP NP N coNP memoryless coNP-c. / NP N coNP infinite memoryless
TP/ TP NP N coNP memoryless undec. - -
WMP: fixed PSPACE-h.
. . P-c.
polynomial window mem. req. EXP-easy exponential
WMP: fixed PUSLV. ) < linear(|S] - hnax) EXPc P
arbitrary window v max -
WMP: bounded NP N coNP memoryless | infinite NPR-h. - -
window problem
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