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Context & Definitions AE Games AE + Energy Constraints Conclusion

General context: strategy synthesis in quantitative games

system
description

environment
description

informal
specification

model as a
two-player

game

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy
=

controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?

⇒ Depends on the winning
objective.
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The talk in one slide

“New” quantitative objective

� Total-payoff (TP) “refines” mean-payoff (MP) (MP value = 0)

� Average-energy (AE) “refines” TP

↪→ characterizes the average energy level along an infinite play
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Conjunction with energy constraints: lower and/or upper
bounds on the energy level (e.g., fuel tank)
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Two-player turn-based games on graphs

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

G = (S1,S2,T ,w)

S = S1 ∪ S2, S1 ∩ S2 = ∅,T ⊆ S × S ,
w : T → Z
P1 states =

P2 states =

Plays have values

� f : Plays(G )→ R ∪ {−∞,∞}
Players follow pure strategies

� σi : Prefs i (G )→ S

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 5 / 31



Context & Definitions AE Games AE + Energy Constraints Conclusion

Energy, total-payoff, mean-payoff
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−1 7
−4

Then, (2, 5, 2)ω

EL(π(n)) =
n−1∑
i=0

w(si , si+1)

TP(π) = lim sup
n→∞

EL(π(n))

MP(π) = lim sup
n→∞

1

n
EL(π(n))
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= 3

Energy

Time
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Decision problems

TP (MP) threshold problem

� Given t ∈ Q and sinit ∈ S , ∃?σ1 ∈ Σ1 s.t. ∀σ2 ∈ Σ2,
TP(Outcome(sinit, σ1, σ2)) ≤ t

↪→ we take the minimizer point of view

Lower-bounded energy problem
� Given cinit ∈ N and sinit ∈ S , ∃?σ1 ∈ Σ1 s.t. ∀σ2 ∈ Σ2,

∀n ≥ 0, cinit + EL(Outcome(sinit, σ1, σ2)(n)) ≥ 0

↪→ fixed initial credit

Lower- and upper-bounded energy problem
� Given cinit ∈ N, U ∈ N and sinit ∈ S , ∃?σ1 ∈ Σ1 s.t. ∀σ2 ∈ Σ2,

∀n ≥ 0, cinit + EL(Outcome(sinit, σ1, σ2)(n)) ∈ [0,U]
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Known results

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] exponential

� For all objectives but EGLU , memoryless strategies suffice for
both players.
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Average-energy: motivating example

Hydac oil pump industrial case study [CJL+09] (Quasimodo
research project).

Goals:

1 Keep the oil level in the safe zone.

↪→ EGLU

2 Minimize the average oil level.

↪→ AE

⇒ Conjunction: AELU
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Related work

AE appeared in [TV87] as an alternative total reward
definition.

↪→ Not studied until recently.

Chatterjee and Prabhu use a variant in [CP13].

↪→ Average debit-sum level objective.
↪→ Pseudo-polynomial algorithm.
↪→ Complexity and memory requirements are open.

AE studied independently by Boros et al. in [BEGM15].

↪→ Stochastic context.
↪→ Similar results but different approach.

Nothing is known for AELU .
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Average-energy: definition
Recall

EL(π(n)) =
n−1∑
i=0

w(si , si+1)

TP(π) = lim sup
n→∞

EL(π(n))

MP(π) = lim sup
n→∞

1

n
EL(π(n))

Average-energy (AE)

Describes the average energy level along a play:

AE (π) = lim sup
n→∞

1

n

n∑
i=1

EL(π(i))

+ infimum variants

TP, MP, AE
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TP “refines” MP

If P1 (minimizer) can ensure MP = MP < 0 (memoryless), he
can ensure TP = TP = −∞.

If P2 (maximizer) can ensure MP = MP > 0 (memoryless),
he can ensure TP = TP =∞.

⇒ TP discriminates “MP-zero” strategies depending on the
high points (TP) or low points (TP) of cycles.

1
0

MP = MP = 0

TP = TP = 1

1
−2

4

−2

MP = MP = 0

TP = 3, TP = −1
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AE “refines” TP
AE describes the long-run average EL

↪→ By definition, AE (π),AE (π) ∈ [TP(π),TP(π)].

⇒ AE discriminates strategies with identical high/low
points.

1

2 2

−2−2

2

−2

1

2 0

0−2

Step

Energy
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Energy
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AE = 11/3

Identical MP and TP, but AE lower in the first one.

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 13 / 31



Context & Definitions AE Games AE + Energy Constraints Conclusion

AE “refines” TP
AE describes the long-run average EL

↪→ By definition, AE (π),AE (π) ∈ [TP(π),TP(π)].

⇒ AE discriminates strategies with identical high/low
points.

1

2 2

−2−2

2

−2

1

2 0

0−2

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE = 3

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE = 11/3

Identical MP and TP, but AE lower in the first one.

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 13 / 31



Context & Definitions AE Games AE + Energy Constraints Conclusion

Memoryless determinacy (1/2)

Classical criteria from the literature cannot be applied
out-of-the-box [EM79, BSV04, AR14, GZ04, Kop06].

↪→ Common approach: connect first cycle games and
infinite-duration ones.

↪→ Requires e.g., closure under cyclic permutation and
concatenation [AR14].

Intuitively: ability to mix and shuffle good cycles and stay good.
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out-of-the-box [EM79, BSV04, AR14, GZ04, Kop06].

↪→ Common approach: connect first cycle games and
infinite-duration ones.

↪→ Requires e.g., closure under cyclic permutation and
concatenation [AR14].

Intuitively: ability to mix and shuffle good cycles and stay good.

Not true in general for AE!

C1 = {−1}, C2 = {1}, C3 = {1,−2}

AE (C1C2) = (−1 + 0)/2 = −1/2<AE (C2C1) = (1− 0)/2 = 1/2

AE (C3) = 0 but AE (C3C3) = −1/2 < 0
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Memoryless determinacy (1/2)

Classical criteria from the literature cannot be applied
out-of-the-box [EM79, BSV04, AR14, GZ04, Kop06].

↪→ Common approach: connect first cycle games and
infinite-duration ones.

↪→ Requires e.g., closure under cyclic permutation and
concatenation [AR14].

Intuitively: ability to mix and shuffle good cycles and stay good.

We can only shuffle/repeat cycles that are neutral w.r.t. the energy
level!

↪→ zero-cycles
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Memoryless determinacy (2/2)

Two key properties:

1 Extraction of prefixes
� Let ρ ∈ Prefs(G ), π ∈ Plays(G ). Then,

AE (ρ · π) = EL(ρ) + AE (π).

2 Extraction of a best cycle
� Given an infinite sequence of zero-cycles, one can select and

repeat a best cycle to minimize the average-energy.
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One-player games: strategy
Sketch (minimizer)

1 If you can ensure MP < 0, do it.
� Memoryless [EM79], implies AE = −∞.

2 If you cannot ensure MP = 0, forget it.
� You are doomed, AE =∞.

3 Play the strategy that minimizes

AE (ρ · Cω) = EL(ρ) + AE (C),

where C is a simple zero-cycle.

C
ρ

↪→ Picking the best combination can be done without memory.
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One-player games: P algorithm (1/2)

Case MP < 0 is easy

� Look for a negative cycle (e.g., Bellman-Ford, O(|S |3))

Assume MP = 0: pick the best combination of ρ and C
� Computing the best ρ for each state is easy with classical

graph algorithms (e.g., Bellman-Ford).
� Main task: computing the best C (AE-wise) for each state.

For each state, we compute the best cycle of length k , for all
k ∈ {1, . . . , |S |}, then pick the best one.

� Need to compute Cs,k in polynomial time.

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 17 / 31
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One-player games: P algorithm (2/2)
Computing Cs,k : build a new graph Gs,k of size |S | · (k + 1).

(s, k)

(s ′, k − 1) (s ′′, k − 1)

(s ′′′, k−2)

(s, 0)
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Write an LP s.t.

solution is a path from (s, k) to (s, 0)∑
1st dim.

= 0 (zero cycle)

minimize
∑

2nd dim.

= AE (C) · k
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⇒ polynomial-time algorithm for 1-p. games

Write an LP s.t.

solution is a path from (s, k) to (s, 0)∑
1st dim.
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minimize
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Two-player games

Memoryless determinacy
� Follows from the 1-p. results (minimizer and maximizer) using

Gimbert and Zielonka [GZ05].

Threshold problem in NP ∩ coNP.

� Memoryless determinacy + P for one-player games.

“Mean-payoff” hard.

� Replace any edge of weight c by two consecutive edges of
values 2 · c and −2 · c .

� Use decomposition techniques.
� MP(π) in G = AE (π) in G ′.
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Wrap-up

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] exponential

AE P NP ∩ coNP memoryless

� For all objectives but EGLU , memoryless strategies suffice for
both players.
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Two settings

1 AELU : AE with lower (0) and upper (U ∈ N) bounds.

2 AEL: AE with only the lower bound (0).

↪→ Fixed initial credit cinit = 0.
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Memory is needed!

Example: AELU ; minimize AE while keeping EL ∈ [0, 3].

b a c

2

0 1

0−3

(a) One-player AELU game.

Step

Energy

0

1

2

3

1 2 3 4 5 6 7 8

AE = 3/2

(b) Play π1 = (acacacab)ω.

Step

Energy

0

1

2

3

1 2 3 4 5

AE = 8/5

(c) Play π2 = (aacab)ω.

Step

Energy

0

1

2

3

1 2 3 4 5

AE = 1

(d) Play π3 = (acaab)ω.

Minimal AE with π3: alternating between the +1, +2 and−3 cycles.
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Memory is needed!

Example: AELU ; minimize AE while keeping EL ∈ [0, 3].

Non-trivial behavior in general!
↪→ Need to choose carefully which cycles to play.
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Memory is needed!

Example: AELU ; minimize AE while keeping EL ∈ [0, 3].

Non-trivial behavior in general!
↪→ Need to choose carefully which cycles to play.

The AELU problem is EXPTIME-complete.

↪→ Reduction from AELU to AE on pseudo-polynomial game
(⇒ AELU ∈ NEXPTIME ∩ coNEXPTIME).

↪→ Reduction from this AE game to MP game +
pseudo-poly. algorithm.
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AELU problem: reduction to AE
↪→ Expanded graph constraining the game within the energy

bounds [0,U]. Pseudo-polynomial size: O(|S | · (U + 1)).
↪→ If we go out, AE =∞.

b a c

2

0 1

0−3

Weights ∼ changes in EL

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c , 0) (c , 1) (c , 2) (c , 3)

sink

1 1 1
0 0 0 0

1 1 1 11

0 0 0 0

−3

2 2

minimal AE ∧ EL ∈ [0, 3] in G ⇐⇒ minimal AE in G ′
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AELU problem: further reduction to MP
↪→ Expanded graph of pseudo-poly. size: O(|S | · (U + 1)).

Threshold for AE : t = 1.
↪→ If we go out, MP = dte+ 1 > t ⇒ losing.

b a c

2

0 1

0−3

Weights ∼ EL of prefix

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c , 0) (c , 1) (c , 2) (c , 3)

sink

1 | 0 1 | 1 1 | 2
0 | 0 0 | 1 0 | 2 0 | 3

1 | 0 1 | 1 1 | 2 1 | 31 | 2

0 | 0 0 | 1 0 | 2 0 | 3

−3 | 3

2 | 0 2 | 1

If ¬(♦sink): AE (π) in G ′ = MP(π) in G ′′
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AELU problem: complexity

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] exponential

AE P NP ∩ coNP memoryless

AELU (poly. U) P NP ∩ coNP polynomial

AELU (arbitrary) EXPTIME-e./PSPACE-h. EXPTIME-c. exponential

� Pseudo-poly. algo. to solve the MP problem (e.g., [BCD+11]).

� Lower bounds follow from EGLU .

� Exponential memory is both necessary and sufficient.
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AEL problem: partial answers

One-player games.
↪→ Key argument: upper-bounding the value of the energy over

a witness winning path.
↪→ Pseudo-polynomial bound for U, then reduction to an AELU

problem.
↪→ EXPTIME-algorithm.
↪→ Lower bound: NP-hard via subset sum problem [GJ79].

Two-player games.
↪→ Decidability is open.
↪→ Lower bound: EXPTIME-hard via countdown games [JSL08].
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AEL problem: complexity

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ13] EXPTIME-c. [BFL+08] exponential

AE P NP ∩ coNP memoryless

AELU (poly. U) P NP ∩ coNP polynomial

AELU (arbitrary) EXPTIME-e./PSPACE-h. EXPTIME-c. exponential

AEL EXPTIME-e./NP-h. open/EXPTIME-h. open (required)

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 28 / 31



Context & Definitions AE Games AE + Energy Constraints Conclusion

1 Context & Definitions

2 Average-Energy Games

3 Average-Energy with Energy Constraints

4 Conclusion

Average-Energy Games Bouyer, Larsen, Laursen, Markey, Randour 29 / 31



Context & Definitions AE Games AE + Energy Constraints Conclusion

Wrap-up

“New” quantitative objective.

� Practical motivations (e.g., Hydac).

� “Refines” TP (and MP).

� Same complexity class as EGL, MP and TP games.

� AELU well-understood.

� Open questions for AEL.

↪→ Mostly theoretical interest (unbounded energy capacity is not
realistic).
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Thank you! Any question?
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