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Aim of this work

functional
properties

quantitative
requirements

synthesis

implementable
controller

; restriction to finite-memory strategies.
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Aim of this work

Study games with

� multi-dimensional quantitative objectives (energy and
mean-payoff)

� and a parity objective.

; First study of such a conjunction.

Address questions that revolve around strategies:

� bounds on memory,

� synthesis algorithm (cf. Acacia+),

� randomness
?∼ memory.
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Results Overview

Memory bounds

MEPGs MMPPGs
optimal finite-memory optimal optimal

exp. exp. infinite [CDHR10]

Strategy synthesis (finite memory)

MEPGs MMPPGs

EXPTIME EXPTIME

Randomness as a substitute for finite memory

MEGs EPGs MMP(P)Gs MPPGs

one-player × ×
√ √

two-player × × ×
√
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1 Multi energy and mean-payoff parity games

2 Memory bounds

3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion
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Turn-based games

s0

p = 1

s1

p = 1

s2

p = 3

s3

p = 2

s4

p = 0

s5

p = 2

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

G = (S1,S2, sinit ,E )

S = S1∪S2, S1∩S2 = ∅,E ⊆ S×S

P1 states =

P2 states =

Plays, prefixes, pure strategies.
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Integer k-dim. payoff function

s0

p = 1

s1

p = 1

s2

p = 3

s3

p = 2

s4

p = 0

s5

p = 2

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

G = (S1,S2, sinit ,E ,w)

w : E → Zk

Energy level
EL(ρ) =

∑i=n−1
i=0 w(si , si+1)

Mean-payoff
MP(π) = lim infn→∞

1
nEL(π(n))
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Energy and mean-payoff problems

s0

p = 1

s1

p = 1

s2

p = 3

s3

p = 2

s4

p = 0

s5

p = 2

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

Unknown initial credit

∃? v0 ∈ Nk , λ1 ∈ Λ1 s.t.

Mean-payoff threshold

Given v ∈ Qk , ∃?λ1 ∈ Λ1 s.t.
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Parity problem

s0
p = 1

s1
p = 1

s2
p = 3

s3
p = 2

s4
p = 0

s5
p = 2

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

Gp =
(
S1, S2, sinit ,E ,w , p

)
p : S → N
Par(π) = min {p(s) | s ∈ Inf(π)}
Even parity

∃?λ1 ∈ Λ1 s.t. the parity is even

� canonical way to express ω-regular
objectives
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Known results

Memory (P1) Decision problem

Energy

1-dim
memoryless NP ∩ coNP

[CdAHS03, BFL+08]
k-dim

finite coNP-c
[CDHR10]

1-dim + parity
exponential NP ∩ coNP

[CD10]

Mean-payoff

1-dim
memoryless NP ∩ coNP

[EM79, LL69]
k-dim

infinite coNP-c (fin.)
[CDHR10]

1-dim + parity
infinite NP ∩ coNP

[CHJ05, BMOU11]
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Infinite memory?

Example for MMPGs, even with only one player! [CDHR10]

s0 s1

(2, 0) (0, 2)
(0, 0)

(0, 0)

� To obtain MP(π) = (1, 1), P1 has to visit s0 and s1 for longer
and longer intervals before jumping from one to the other.

� Any finite-memory strategy involving these edges induces an
ultimately periodic play s.t. MP(π) = (x , y), x + y < 2.
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Restriction to finite memory

Infinite memory:

� needed for MMPGs & MPPGs,
� practical implementation is unrealistic.

Finite memory:

� preserves game determinacy,
� provides equivalence between energy and mean-payoff settings,
� the way to go for strategy synthesis.
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Obtained results

MEPGs MMPPGs
optimal finite-memory optimal optimal

exp. exp. infinite [CDHR10]

By [CDHR10], we only have to consider MEPGs. Recall that the
unknown initial credit decision problem for MEGs (without parity)
is coNP-complete.
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Upper memory bound: even-parity SCTs

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)(−2, 1)

(0,−1)

(2, 0)

A winning strategy λ1 for initial
credit v0 = (2, 0) is

� λ1(∗s1s3) = s4,
� λ1(∗s2s3) = s5,
� λ1(∗s5s3) = s5.

Lemma: To win, P1 must be able
to enforce positive cycles of even
parity.

� Self-covering paths on VASS
[Rac78, RY86].

� Self-covering trees (SCTs) on
reachability games over VASS
[BJK10].
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Upper memory bound: even-parity SCTs

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)(−2, 1)

(0,−1)

(2, 0)

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Pebble moves ⇒ strategy.
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Upper memory bound: even-parity SCTs

T = (Q,R) is an epSCT for s0,
Θ : Q 7→ S × Zk is a labeling
function.

Root labeled 〈s0, (0, . . . , 0)〉.
Non-leaf nodes have

� unique child if P1,
� all possible children if P2.

Leafs have even-descendance
energy ancestors: ancestors
with lower label and minimal
priority even on the downward
path.

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉

Pebble moves ⇒ strategy.
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Upper memory bound: SCTs for VASS games

P1 wins ⇒ ∃ SCT of depth at most exponential [BJK10].

; If there exists a winning strategy, there exists a “compact” one.

; Idea is to eliminate unnecessary cycles.

Limits:

� weights in {−1, 0, 1},
� no parity,

� depth only.
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Upper memory bound: SCTs for MEGs (no parity)

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

⇓

Depth bound from [BJK10].
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Upper memory bound: SCTs for MEGs (no parity)

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

2-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

V bits to encode W
l = 2(d−1)·W ·|S | · (W · |S |+ 1)c·k

2

= 2(d−1)·2
V ·|S | · (W · |S |+ 1)c·k

2

⇓

Naive approach: blow-up by W in the size of the state space.
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Upper memory bound: SCTs for MEGs (no parity)

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

V bits to encode W
l = 2(d−1)·W ·|S | · (W · |S |+ 1)c·k

2

= 2(d−1)·2
V ·|S | · (W · |S |+ 1)c·k

2

⇓
Width bounded by L = d l

Naive approach: width increases exponentially with depth.
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Upper memory bound: SCTs for MEGs (no parity)

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

V bits to encode W
l = 2(d−1)·W ·|S | · (W · |S |+ 1)c·k

2

= 2(d−1)·2
V ·|S | · (W · |S |+ 1)c·k

2

⇓
Width bounded by L = d l

Naive approach: overall, 3-exp. memory ≤ L · l , without parity.
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Upper memory bound: epSCTs for MEPGs

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

l = 2(d−1)·|S | · (W · |S |+ 1)c·k
2

⇓
Width bounded by L = d l

Refined approach: no blow-up in exponent as branching is preserved,
extension to parity.
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Upper memory bound: epSCTs for MEPGs

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

l = 2(d−1)·|S | · (W · |S |+ 1)c·k
2

⇓
Width bounded by L = |S | · (2 · l ·W + 1)k

Refined approach: merge equivalent nodes, width is bounded by
number of incomparable labels (see next slide).
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Upper memory bound: epSCTs for MEPGs

1-exp.

2-exp.

1-exp.

1-exp.

2-exp.

3-exp.

w : E → {−1, 0, 1}k
l = 2(d−1)·|S| · (|S |+ 1)c·k

2

⇓
w : E → Zk , W max absolute weight,

l = 2(d−1)·|S | · (W · |S |+ 1)c·k
2

⇓
Width bounded by L = |S | · (2 · l ·W + 1)k

Refined approach: overall, single exp. memory ≤ L · l , for multi
energy along with parity. Initial credit bounded by l ·W .
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Upper memory bound: from MEPGs to MEGs

Bound on depth.

⇒ Bound on steps before seeing an even minimal priority.

⇒ Encoding of parity as additional energy dimensions.
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Upper memory bound: merging nodes in SCTs

Key idea to reduce width to single exp.
� P1 only cares about the energy level.
� If he can win with energy v , he can win with energy ≥ v .

s0

s1 s2

s3

s4 s5

(−1, 1) (0, 2)

(0, 1) (0, 0)

(1,−1) (−2, 1)

(0,−1)

(2, 0)

〈s0, (0, 0)〉

〈s1, (−1, 1)〉 〈s2, (0, 2)〉

〈s3, (−1, 2)〉 〈s3, (0, 2)〉

〈s4, (0, 1)〉 〈s5, (−2, 3)〉

〈s0, (0, 0)〉 〈s3, (0, 3)〉
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Lower memory bound

Lemma: There exists a family of multi energy games
(G (K ))K≥1, = (S1,S2, sinit ,E , k = 2 · K ,w : E → {−1, 0, 1}) s.t.
for any initial credit, P1 needs exponential memory to win.
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Lower memory bound

s1

s1,L

s1,R

sK

sK,L

sK,R

t1

t1,L

t1,R

tK

tK,L

tK,R

∀ 1 ≤ i ≤ K ,w((◦, si )) = w((◦, ti )) = (0, . . . , 0),

w((si , si,L)) = −w((si , si,R)) = w((ti , ti,L)) = −w((ti , ti,R)),

∀ 1 ≤ j ≤ k , w((si , si,L))(j) =


= 1 if j = 2 · i − 1

= −1 if j = 2 · i
= 0 otherwise

.

Strat. Synth. for Multi Quant. Obj. Chatterjee, Randour, Raskin 18 / 32



MEPGs & MMPPGs Mem. bounds Synthesis Randomization Conclusion

Lower memory bound

s1

s1,L

s1,R

sK

sK,L

sK,R

t1

t1,L

t1,R

tK

tK,L

tK,R

If P1 plays according to a Moore machine with less than 2K states,
he takes the same decision in some state tx for the two highlighted
prefixes (let x = K w.l.o.g.).
⇒ P2 can force a decrease by 1 on some dimension every visit.
⇒ P1 loses for any v0 ∈ Nk .
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Symbolic synthesis algorithm

Algorithm CpreFP for MEPGs and MMPPGs:

� symbolic (antichains) and incremental,

� winning strategy of at most exponential size,

� worst-case exponential time.

Idea: greatest fixed point of a CpreC operator.

� C: incremental, ensures convergence.

� Exponential bound on the size of manipulated sets (∼ width).

� Exponential bound on the number of iterations if a winning
strategy exists (∼ depth).
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Symbolic synthesis algorithm: Cpre

C = 2 · l ·W ∈ N, U(C) = (S1 ∪ S2)× {0, 1, . . . ,C}k ,

U(C) = 2U(C), the powerset of U(C),

CpreC : U(C)→ U(C), CpreC(V ) =

{(s1, e1) ∈ U(C) | s1 ∈ S1 ∧ ∃(s1, s) ∈ E ,∃(s, e2) ∈ V : e2 ≤ e1 + w(s1, s)}
∪

{(s2, e2) ∈ U(C) | s2 ∈ S2 ∧ ∀(s2, s) ∈ E ,∃(s, e1) ∈ V : e1 ≤ e2 + w(s2, s)}

� Intuitively, compute for each state the set of winning initial
credits, represented by the minimal elements of these upper
closed sets.
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Symbolic synthesis algorithm: Cpre

C

C

s

s ′

s ′′

P1 can win for energy
levels in the upper
closed sets.
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Symbolic synthesis algorithm: CpreFP

Correctness
� (sinit , (c1, . . . , ck)) ∈ Cpre∗C ; winning strategy for initial

credit (c1, . . . , ck).

Completeness
� Winning strategy and

SCT of depth l ;
(sinit , (C, . . . ,C)) ∈
Cpre∗C for C = 2 · l ·W
(cf. max init. credit).

2 · l ·W

2 · l ·W

/

/
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Question

When and how can P1 trade his pure finite-memory strategy for an
equally powerful randomized memoryless one ?

� Sure semantics ; almost-sure semantics (i.e., probability 1).

� Illustration on single mean-payoff Büchi games.
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Mean-payoff Büchi games

Remark. MPBGs require infinite memory for optimality.

s0 s10

0

−1

� P1 has to delay his visits of s1 for longer and longer intervals.

Lemma: In MPBGs, ε-optimality can be achieved surely by pure
finite-memory strategies and almost-surely by randomized
memoryless strategies.
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MPBGs: key idea

s0 s10

0

−1

1 Uniform memoryless strategies:

λgfe1 ensures any cycle c has EL(c) ≥ 0 [CD10],

λ♦F1 ensures reaching F in at most n steps (attractor).

2 Alternate using pure memory or probability distributions.

� Frequency of λgfe1 → 1 ⇒ MP→ MP∗.
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Obtained results

MEGs EPGs MMP(P)Gs MPPGs

one-player × ×
√ √

two-player × × ×
√
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1 Multi energy and mean-payoff parity games

2 Memory bounds

3 Strategy synthesis

4 Randomization as a substitute to finite-memory

5 Conclusion
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Conclusion

Quantitative objectives

Parity

Restriction to finite memory (practical interest)

Exponential memory bounds

EXPTIME symbolic and incremental synthesis

Randomness instead of memory
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Results Overview

Memory bounds

MEPGs MMPPGs
optimal finite-memory optimal optimal

exp. exp. infinite [CDHR10]

Strategy synthesis (finite memory)

MEPGs MMPPGs

EXPTIME EXPTIME

Randomness as a substitute for finite memory

MEGs EPGs MMP(P)Gs MPPGs

one-player × ×
√ √

two-player × × ×
√
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Thanks. Questions ?
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Upper memory bound: from MEPGs to MEGs

Thanks to the bound on depth for MEPGs, encode parity
(2 ·m priorities) as m additional energy dimensions.

� For each odd priority, add one dimension.
� Decrease by 1 when this odd priority is visited.
� Increase by l each time a smaller even priority is visited.

P1 maintains the energy positive on all additional dimensions
iff he wins the original parity objective.
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MPBGs: sketch of proof

s0 s10

0

−1

1 Let G = (S1,S2, sinit ,E ,w ,F ), with F the set of Büchi states.
Let n = |S |. Let Win be the set of winning states for the
MPB objective with threshold 0 (w.l.o.g.). For all s ∈Win,

P1 has two uniform memoryless strategies λgfe1 and λ♦F1 s.t.

λgfe1 ensures that any cycle c of its outcome has EL(c) ≥ 0
[CD10],
λ♦F1 ensures reaching F in at most n steps, while staying in
Win.
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MPBGs: sketch of proof

2 For ε > 0, we build a pure finite-memory λpf1 s.t.

(a) it plays λgfe1 for
2 ·W · n

ε
− n steps, then

(b) it plays λ♦F1 for n steps, then again (a).

This ensures that

� F is visited infinitely often,

� the total cost of phases (a) + (b) is bounded by −2 ·W · n,
and thus the mean-payoff is at least −ε.
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MPBGs: sketch of proof

3 Based on λgfe1 and λ♦F1 , we obtain almost-surely ε-optimal
randomized memoryless strategies, i.e.,

∀ ε > 0, ∃λrm1 ∈ ΛRM
1 , ∀λ2 ∈ Λ2,

Pλ
rm
1 ,λ2

sinit (Par(π) mod 2 = 0) = 1 ∧ Pλ
rm
1 ,λ2

sinit (MP(π) ≥ −ε) = 1.

Strategy:

∀s ∈ S , λrm1 (s) =

{
λgfe1 (s) with probability 1− γ,
λ♦F1 (s) with probability γ,

for some well-chosen γ ∈ ]0, 1[.
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MPBGs: sketch of proof

Büchi

� Probability of playing as λ♦F1 for n steps in a row and
ensuring visit of F strictly positive at all times.

� Thus λrm1 almost-sure winning for the Büchi objective.
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MPBGs: sketch of proof

Mean-payoff

� Consider

all end components
in all MCs induced by pure memoryless strategies of P2.

� Choose γ so that all ECs have expectation > −ε.

� Put more probability on lengthy sequences of gfe edges.
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