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The talk in one slide

Study of average-energy games: quantitative two-player
games where the goal is to minimize the average energy level
in the long-run.

AE games studied in [BMR+16], also in conjunction with
energy constraints: EGL or EGLU (lower bound only, or lower
+ upper bounds).

Goal of this work

Solving a problem left open in [BMR+16]: two-player games with
conjunction of an AE constraint and an EGL one, i.e., AEL games.

� To solve them, we make a detour by mean-payoff games on
infinite arenas.

� We also consider multi-dimensional extensions of AE games.
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General context: strategy synthesis in quantitative games

system
description

environment
description

informal
specification

model as a
two-player

game

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy
=

controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?

⇒ Depends on the winning
objective.
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Motivating example for average-energy

Hydac oil pump industrial case study [CJL+09] (Quasimodo
research project).

Goals:

1 Keep the oil level in the safe zone.

↪→ Energy objective with lower
and upper bounds: EGLU

2 Minimize the average oil level.

↪→ Average-energy objective: AE

⇒ Conjunction: AELU
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Average-energy: illustration
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1 Two-player turn-based games with
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Focus on two memoryless strategies.

=⇒ We look at the energy level (EL) along a play.
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AE = 4/3

Energy objective (EGL/EGLU): e.g., always maintain EL ≥ 0.
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Mean-payoff (MP): long-run average payoff per transition.
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Average-energy: illustration
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Focus on two memoryless strategies.

=⇒ We look at the energy level (EL) along a play.
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Mean-payoff (MP): long-run average payoff per transition.

=⇒ Let’s change the weights of our game.

Bounding Average-Energy Games Bouyer, Hofman, Markey, Randour, Zimmermann 7 / 26



AE games AEL games Multi-dim. extensions Conclusion

Average-energy: illustration
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Total-payoff (TP) refines MP in the case MP = 0 by looking at
high/low points of the sequence.
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Average-energy: illustration
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Total-payoff (TP) refines MP in the case MP = 0 by looking at
high/low points of the sequence.

=⇒ Let’s change the weights again.
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Average-energy: illustration
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Average-energy (AE) further refines TP: average EL along a play.
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Average-energy: illustration
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Focus on two memoryless strategies.

=⇒ We look at the energy level (EL) along a play.
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�(EL ≥ 0)MP = 1/3MP = 0TP = 0,TP = 1TP = 0,TP = 2

AE = 4/3

Average-energy (AE) further refines TP: average EL along a play.

=⇒ Natural concept (cf. case study).

Bounding Average-Energy Games Bouyer, Hofman, Markey, Randour, Zimmermann 7 / 26



AE games AEL games Multi-dim. extensions Conclusion

Formal definitions

We consider games G = (S0, S1,E ) between players P0 and
P1, such that each edge e ∈ E has an integer weight w(e).

For a prefix ρ = (ei )1≤i≤n, we define

its energy level as EL(ρ) =
∑n

i=1 w(ei );

its mean-payoff as MP(ρ) = 1
n

∑n
i=1 w(ei ) = 1

nEL(ρ);

its average-energy as AE(ρ) = 1
n

∑n
i=1 EL(ρ≤i ).

Natural extensions to plays by taking the upper-limit, e.g.,

AE(π) = lim sup
n→∞

1

n

n∑
i=1

EL(π≤i ).
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Overview of known results
Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ15] EXPTIME-c. [BFL+08] exponential

AE P NP ∩ coNP memoryless

AELU PSPACE-c. EXPTIME-c. exponential

AEL PSPACE-e./NP-h. open/EXPTIME-h. open (≥ exp.)

� Results without references are proved in [BMR+16].

� The one-player AEL case is solved by reduction to an AELU

game for a sufficiently large upper bound U, obtained through
results on one-counter automata that permit to bound the
counter value along a path.

=⇒ Let’s first recall how we solve AELU games.
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With energy constraints, memory is needed!

AELU ; minimize AE while keeping EL ∈ [0, 3] (init. EL = 0).

b a c

2

0 1

0−3

(a) One-player AELU game.

Step

Energy

0

1

2

3

1 2 3 4 5 6 7 8

AE = 3/2

(b) Play π1 = (acacacab)ω.

Step

Energy

0

1

2

3

1 2 3 4 5

AE = 8/5

(c) Play π2 = (aacab)ω.

Step

Energy

0

1

2

3

1 2 3 4 5

AE = 1

(d) Play π3 = (acaab)ω.

Minimal AE with π3: alternating between the +1, +2 and−3 cycles.
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With energy constraints, memory is needed!

AELU ; minimize AE while keeping EL ∈ [0, 3] (init. EL = 0).

Non-trivial behavior in general!
↪→ Need to choose carefully which cycles to play.

The AELU problem is EXPTIME-complete.

↪→ Reduction from AELU to AE on pseudo-polynomial game
( =⇒ AELU ∈ NEXPTIME ∩ coNEXPTIME).

↪→ Reduction from this AE game to MP game +
pseudo-poly. algorithm.
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AELU problem: reduction to AE
↪→ Expanded graph constraining the game within the energy

bounds [0,U]. Pseudo-polynomial size: O(|S | · (U + 1)).
↪→ If we go out, AE =∞.

b a c

2

0 1

0−3

Weights ∼ changes in EL

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c , 0) (c , 1) (c , 2) (c , 3)

sink

1 1 1
0 0 0 0

1 1 1 11

0 0 0 0

−3

2 2

minimal AE ∧ EL ∈ [0, 3] in G ⇐⇒ minimal AE in G ′
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AELU problem: further reduction to MP
↪→ Expanded graph of pseudo-poly. size: O(|S | · (U + 1)).

Threshold for AE: t = 1.
↪→ If we go out, MP = dte+ 1 > t ⇒ losing.

b a c

2

0 1

0−3

Weights ∼ EL of prefix

(a, 0) (a, 1) (a, 2) (a, 3)

(b, 0) (b, 1) (b, 2) (b, 3)

(c , 0) (c , 1) (c , 2) (c , 3)

sink

1 | 0 1 | 1 1 | 2
0 | 0 0 | 1 0 | 2 0 | 3

1 | 0 1 | 1 1 | 2 1 | 31 | 2

0 | 0 0 | 1 0 | 2 0 | 3

−3 | 3

2 | 0 2 | 1

If ¬(♦sink): AE(π) in G ′ = MP(π) in G ′′
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Tackling the two-player AEL case

Aim of our approach

Obtain an energy upper bound U sufficient to reduce two-player
AEL games to AELU games.

� The approach used for one-player games does not suffice: we
cannot modify plays directly because of P1, the adversary.

� Defining an appropriate notion of self-covering tree
(e.g., [CRR14]) and using it directly is difficult due to the
complexity of the AE payoff (w.r.t. mean-payoff for example).

Idea

As in the AELU case, we will transform the AEL game to an MP
game on an expanded graph, with a similar construction.

=⇒ Problem: this graph will be infinite!
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From an AEL game to an infinite MP one
Given G = (S0,S1,E ), sinit ∈ S and AE threshold t ∈ Q, we define
the MP game G ′ = (Γ0, Γ1,∆):

Γ0 = S0 × N and Γ1 = S1 × N ∪ {⊥};
∆ is given by:

((s, c), c ′, (s ′, c ′)) ∈ ∆ if ∃ (s,w , s ′) ∈ E with c ′ = c + w ≥ 0,
((s, c), dte+ 1,⊥) ∈ ∆ if ∃ (s,w , s ′) ∈ E with c + w < 0,
(⊥, dte+ 1,⊥) ∈ ∆.

=⇒ Essentially the same construction as before, but with
energy only bounded from below.

Equivalence

P0 has a winning strategy in G for AEL with threshold t iff P0 has
a winning strategy in G ′ for MP with threshold t.

=⇒ From now on, we consider the MP game.
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Solving the infinite MP game

So, it suffices to solve the MP game. . .

� Not much is known about infinite MP game.

� Our game has a special structure: its graph can be seen as the
configuration graph of a one-counter pushdown system, where
the stack height corresponds to the EL and the weight of an
edge is given by the stack height of the target configuration.

=⇒ Problem: MP games on pushdown systems with
bounded weight functions are already undecidable [CV12],

and our weight function is unbounded. . .

=⇒ We need to use the special structure!
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Sketch of our approach (1/2)

Goal

Prove that if a winning strategy exists, there exists one that wins
while keeping the energy below a given bound U.

1 Along a winning play for MP, configurations below
threshold t must be visited frequently.

=⇒ Proved through a density argument.

2 Refining the analysis, we give an exponential (in the
encoding) upper-bound on the length of the shortest good
cycle along a winning play.

Good cycle: MP ≤ t and from a configuration below t.
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Sketch of our approach (2/2)
nroot leaf

start of good cycle

critical node

backward edge

good cycle

3 We define finite good strategy trees, which induce
finite-memory winning strategies.

4 We prove that any winning strategy induces a finite good
strategy tree.

=⇒ We need to bound the energy level in such a good
strategy tree.
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Sketch of our approach (2/2)
nroot leaf

start of good cycle

critical node

backward edge

good cycle

5 We build the strategy tree for a strategy σ by considering the
shortest good cycles, hence the good cycles are already of
bounded length (exponential) by Item 2.

=⇒ We need to bound the remaining (i.e., gray) parts.
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Sketch of our approach (2/2)
nroot leaf

start of good cycle

critical node

backward edge

good cycle

6 We consider reachability on our graph (a particular pushdown
game) and show that we can bound the energy needed by
strategies going from a critical node to the starting nodes of
good cycles (by a double-exponential in the encoding).

=⇒ We “replace” the strategy described by our tree in
those gray parts by one with bounded energy.
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Sketch of our approach (2/2)
nroot leaf

start of good cycle

critical node

backward edge

good cycle

=⇒ Overall: we obtain that a doubly-exponential bound on
the energy suffices to win the MP game.

=⇒ Applying the AELU reduction for this bound, we obtain
2-EXPTIME membership of AEL games.
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AEL games: summary

Objective 1-player 2-player memory

MP P [Kar78] NP ∩ coNP [ZP96] memoryless [EM79]

TP P [FV97] NP ∩ coNP [GS09] memoryless [GZ04]

EGL P [BFL+08] NP ∩ coNP [CdAHS03, BFL+08] memoryless [CdAHS03]

EGLU PSPACE-c. [FJ15] EXPTIME-c. [BFL+08] pseudo-polynomial

AE P NP ∩ coNP memoryless

AELU PSPACE-c. EXPTIME-c. exponential

AEL PSPACE-e./NP-h. 2-EXPTIME-e./EXPSPACE-h. doubly-exp./super-exp.

� EXPTIME for unary encoding or polynomial weights and
thresholds.

� Memory upper bound follows from our reduction, lower bound
is by encoding of a succinct one-counter game [Hun14].

� EXPSPACE-hardness is also through reduction from succinct
one-counter games [Hun15].
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Multi-dimensional variants of AE games

We considered extensions to multiple dimensions (i.e., vectors of
weights, bounds and thresholds) of three classes of games:

1 AE games (without energy bounds),

2 AELU games,

3 AEL games.

=⇒ We give a quick overview here.
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Multi-dimensional AE games

Reminder: one-dimensional version is in NP ∩ coNP and
memoryless strategies suffice.

Undecidability

AE games with 3 or more dimensions are undecidable.

=⇒ We prove it via two-dimensional robot games [NPR16].

Robot game

R = ({q0}, {q1},T ) where T ⊆ Q × [−V ,V ]2 × Q for some
V ∈ N, and qi belongs to Pi . The game starts in q0 with counter
values (x0, y0) ∈ Z2 and P0 tries to reach (q0, (0, 0)).
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Multi-dimensional AELU games

Reminder: one-dimensional version is EXPTIME-c. and
exponential-memory strategies suffice.

Decidability

Multi-dim. AELU games are in NEXPTIME ∩ coNEXPTIME.

We generalize the construction seen before: reduction to MP game
over an expanded graph. Two differences:

� graph is now exponential in the number of dimensions,

� multi-dim. limsup MP games are in NP ∩ coNP [VCD+15].
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Multi-dimensional AEL games

Reminder: one-dimensional version is in 2-EXPTIME and
doubly-exponential-memory strategies suffice.

Undecidability

AEL games with 2 or more dimensions are undecidable.

=⇒ We prove it via two-counter machines, with a proof similar
to the one for total-payoff games [CDRR15].
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Wrap-up

We solved the open case from [BMR+16]: two-player AEL

games. We proved:

� 2-EXPTIME membership,
� EXPSPACE-hardness,
� almost-tight memory bounds (doubly-exp. vs. super exp.).

As a by-product, we solved a specific class of mean-payoff
(one-counter) pushdown game with unbounded weight
function.

=⇒ Could be interesting to investigate if we can solve larger
classes with similar techniques.

In the multi-dimensional case, we proved that only AELU

games remain decidable.

Thank you! Any question?
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