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Quantitative games on graphs

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

Graph G = (S ,E ,w) with w : E → Z
Two-player game G = (G, S1,S2)

� P1 states =
� P2 states =

Plays have values

� f : Plays(G)→ R ∪ {−∞, ∞}

Players follow strategies

� λi : Prefsi (G )→ D(S)
� Finite memory ⇒ stochastic Moore machine
M(λi ) = (Mem,m0, αu, αn)
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Markov decision processes

1
2

1
2

1
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MDP P = (G, S1,S∆,∆) with ∆: S∆ → D(S)

� P1 states =
� stochastic states =

MDP = game + strategy of P2

� P = G [λ2]

Important: we allow E \ E∆ 6= ∅,
E∆ = {(s1, s2) ∈ E | s1 ∈ S∆ ⇒ ∆(s1)(s2) > 0}

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 6 / 44



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Markov decision processes

1
2

1
2

1

0

2 2

5

−1 7
−4

MDP P = (G, S1,S∆,∆) with ∆: S∆ → D(S)

� P1 states =
� stochastic states =

MDP = game + strategy of P2

� P = G [λ2]

Important: we allow E \ E∆ 6= ∅,
E∆ = {(s1, s2) ∈ E | s1 ∈ S∆ ⇒ ∆(s1)(s2) > 0}

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 6 / 44



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Markov chains
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MC M = (G, δ) with δ : S → D(S)

MC = MDP + strategy of P1

= game + both strategies

� M = P[λ1] = G [λ1, λ2]

Event A ⊆ Plays(G)

� probability PM
sinit

(A)

Measurable f : Plays(G)→ R ∪ {−∞, ∞}
� expected value EM

sinit
(f )

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 7 / 44



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Markov chains

1

0

1
2

1
2

2 2

5

−1 7
−4

MC M = (G, δ) with δ : S → D(S)

MC = MDP + strategy of P1

= game + both strategies

� M = P[λ1] = G [λ1, λ2]

Event A ⊆ Plays(G)

� probability PM
sinit

(A)

Measurable f : Plays(G)→ R ∪ {−∞, ∞}
� expected value EM

sinit
(f )

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 7 / 44



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Classical interpretations

System trying to ensure a specification = P1

� whatever the actions of its environment

The environment can be seen as
� antagonistic

two-player game, worst-case threshold problem for µ ∈ Q
∃?λ1 ∈ Λ1, ∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) ≥ µ

� fully stochastic

MDP, expected value threshold problem for ν ∈ Q
∃?λ1 ∈ Λ1, EP[λ1]

sinit (f ) ≥ ν
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What if you want both?

In practice, we want both

1 nice expected performance in the everyday situation,

2 strict (but relaxed) performance guarantees even in the event
of very bad circumstances.
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Example: going to work

home

station traffic

waiting
room

work

1
10

9
10

2
10

7
10

1
10

train
2

car
1

back home
1

bicycle
45

delay
1

wait
4

light
20

medium
30

heavy
70

departs
35

� Weights = minutes

� Goal: minimize our expected
time to reach “work”

� But, important meeting in
one hour! Requires strict
guarantees on the worst-case
reaching time.
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� Optimal expectation strategy:
take the car.

E = 33, WC = 71 > 60.

� Optimal worst-case strategy:
bicycle.

E = WC = 45 < 60.

� Sample BWC strategy: try
train up to 3 delays then
switch to bicycle.

E ≈ 37.56, WC = 59 < 60.
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Beyond worst-case synthesis

Formal definition

Given a game G = (G,S1,S2), with G = (S ,E ,w) its underlying graph, an
initial state sinit ∈ S , a finite-memory stochastic model λstoch

2 ∈ ΛF
2 of the

adversary, represented by a stochastic Moore machine, a measurable value
function f : Plays(G)→ R ∪ {−∞, ∞}, and two rational thresholds µ, ν ∈ Q,
the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF

1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) > µ (1)

EG [λ1,λ
stoch
2 ]

sinit (f ) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts!
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Mean-payoff value function

MP(π) = lim inf
n→∞

[
1

n
·
i=n−1∑
i=0

w
(
(si , si+1)

)]

Sample play π = 2, −1, −4, 5, (2, 2, 5)ω

� MP(π) = 3 ; prefix-independent

Games: worst-case threshold problem
[LL69, EM79, ZP96, Jur98, GS09]

Memoryless optimal strategies exist for both players and the
problem is in NP ∩ coNP.

MDPs: expected value threshold problem [Put94, FV97]

Memoryless optimal strategies exist and the problem is in P.
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BWC MP problem: overview

Theorem (algorithm & complexity)

The BWC problem for the mean-payoff is in NP ∩ coNP and at
least as hard as deciding the winner in mean-payoff games.

� Additional modeling power for free!

Theorem (memory bounds)

Memory of pseudo-polynomial size may be necessary and is
always sufficient to satisfy the BWC problem for the mean-payoff:
polynomial in the size of the game and the stochastic model, and
polynomial in the weight and threshold values.
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Algorithm: overview
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Preprocessing: three steps

1 Modify weights and use thresholds (µ = 0, ν)

� simple trick to ease the following technicalities

2 Remove all worst-case losing states

SWC :=
{
s ∈ S i | ∃λ1 ∈ Λ1(G i ), ∀λ2 ∈ Λ2(G i ), ∀π ∈ OutsG i (s, λ1, λ2), MP(π) > 0

}
Gw := G i � SWC

� BWC satisfying strategies must avoid S \ SWC: an antagonistic
adversary can force WC losing outcomes from there (due to
prefix-independence)

� Answer No if sinit 6∈ SWC

� In Gw , P1 has a memoryless WC winning strategy from all
states
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Preprocessing: three steps

3 Build G := Gw ⊗M(λi2), the game obtained by product
with the Moore machine
� Corresponding stochastic model λstoch

2 ∈ ΛM
2 (G ) is

memoryless

� Obtain the MDP P := G [λstoch
2 ], sharing the same graph

helps for elegant proofs
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Main algorithm: end-components
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0

1

1

0

−1

9

� An EC of the MDP P = G [λstoch
2 ] is a subgraph in which P1

can ensure to stay despite stochastic states [dA97], i.e., a set
U ⊆ S s.t.

(i) (U,E∆ ∩ (U × U)) is strongly connected,
(ii) ∀ s ∈ U ∩ S∆, Supp(∆(s)) ⊆ U, i.e., in stochastic states, all

outgoing edges either stay in U or belong to E \ E∆.

� Beware arbitrary adversaries may use edges in E \ E∆!
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ECs: E = {U1
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Main algorithm: end-components
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ECs: E = {U1,U2,U3, {s5, s6}, {s6, s7}, {s1, s3, s4, s5}}
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ECs: E = {U1,U2,U3, {s5, s6}, {s6, s7}, {s1, s3, s4, s5}}

Lemma (Long-run appearance of ECs [CY95, dA97])

Let λ1 ∈ Λ1(P) be an arbitrary strategy of P1. Then, we have
that

PP[λ1]
sinit

(
{π ∈ OutsP[λ1](sinit) | Inf(π) ∈ E}

)
= 1.

� The expectation on P[λ1] depends uniquely on ECs
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How to satisfy the BWC problem?

Expected value requirement: reach ECs with the highest
achievable expectations and stay in them (optimal expected
value in EC [FV97])

Worst-case requirement: some ECs may need to be eventually
avoided because risky!
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Classification of ECs
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� U ∈ W , the winning ECs, if P1 can win in G∆ � U, from all
states:

∃λ1 ∈ Λ1(G∆ � U), ∀λ2 ∈ Λ2(G∆ � U), ∀ s ∈ U, ∀π ∈ Outs(G∆�U)(s, λ1, λ2), MP(π) > 0
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� U ∈ W , the winning ECs, if P1 can win in G∆ � U, from all
states:

∃λ1 ∈ Λ1(G∆ � U), ∀λ2 ∈ Λ2(G∆ � U), ∀ s ∈ U, ∀π ∈ Outs(G∆�U)(s, λ1, λ2), MP(π) > 0

� W = {U1,U3, {s5, s6}, {s6, s7}}
� U2 losing: from state s1, P2 can force the outcome
π = (s1s3s4)ω of MP(π) = −1/3 < 0
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Winning ECs: usefulness

Lemma (Long-run appearance of winning ECs)

Let λf1 ∈ ΛF
1 be a finite-memory strategy of P1 that satisfies the

BWC problem for thresholds (0, ν) ∈ Q2. Then, we have that

PP[λf1]
sinit

({
π ∈ OutsP[λf1](sinit) | Inf(π) ∈ W

})
= 1.

� A good finite-memory strategy for the BWC problem should
maximize the expected value achievable through winning ECs
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Winning ECs: computation

� Deciding if an EC is winning or not is in NP ∩ coNP
(worst-case threshold problem)

� |E| ≤ 2|S| ; exponential # of ECs

� Considering the maximal ECs does not suffice! See U3 ⊂ U2
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Winning ECs: computation

� Deciding if an EC is winning or not is in NP ∩ coNP
(worst-case threshold problem)

� |E| ≤ 2|S| ; exponential # of ECs

� Considering the maximal ECs does not suffice! See U3 ⊂ U2

But,

� possible to define a recursive algorithm computing the
maximal winning ECs, such that |Uw| ≤ |S |, in NP ∩ coNP.

� Uses polynomial number of of calls to

max. EC decomp. of sub-MDPs (each in O(|S |2) [CH12]),
worst-case threshold problem (NP ∩ coNP).

� Critical complexity gain for the overall algorithm BWC MP!
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Winning ECs: what can we expect?

We know we can only benefit from the expectation of winning ECs.
But how can we compute it?

Theorem (BWC satisfaction from winning ECs)

Let U ∈ W a winning EC, sinit ∈ U an initial state inside the EC,
and ν∗ ∈ Q the maximal expected value achievable by P1 in P � U.
Then, for all ε > 0, there exists a finite-memory strategy of P1

that satisfies the BWC problem for the thresholds pair (0, ν∗ − ε).

� We can be arbitrarily close to the optimal expectation of
the EC while ensuring the worst-case!
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Inside a WEC: combined strategy

Consider the WEC U3 ⊆ S and E \ E∆ = ∅

s5s6s7
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1
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Two particular memoryless strategies exist:

1 Optimal expected value strategy λe1 ∈ ΛPM
1 (P), yielding E = 2

2 Optimal worst-case strategy λwc1 ∈ ΛPM
1 (G ), ensuring

MP = 1 > 0

Remark: ν∗ = 2 > µ∗ = 1
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Inside a WEC: combined strategy

Consider the WEC U3 ⊆ S and E \ E∆ = ∅
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We define λcmb
1 ∈ ΛPF

1 as follows, for some well-chosen K , L ∈ N.

(a) Play λe1 for K steps and memorize Sum ∈ Z, the sum of
weights encountered during these K steps.

(b) If Sum > 0, then go to (a).
Else, play λwc1 during L steps then go to (a).
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Inside a WEC: combined strategy

Consider the WEC U3 ⊆ S and E \ E∆ = ∅
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� Phase (a): try to increase the expectation and approach the
optimal one

� Phase (b): compensate, if needed, losses that occured in (a)
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Combined strategy: parameters
Key result: ∃K , L ∈ N for any thresholds pair (0, ν∗ − ε)

plays = sequences of periods starting with phase (a)

Worst-case requirement
� ∀K , ∃ L(K ) s.t. (a) + (b) has MP ≥ 1/(K + L) > 0
� Periods (a) induce MP ≥ 1/K (not followed by (b))
� Weights are integers and period length bounded ; inequality

remains strict for play

Expected value requirement
� When K →∞, E(a) → ν∗

� We need the overall contribution of (b) to tend to zero when
K →∞

P(b) decreases faster than increase of L(K): exponential vs.
polynomial
proved using results related to Chernoff bounds and
Hoeffding’s inequality on MCs [Tra09, GO02]: bound on the
probability of being far from the optimal after K steps of (a)
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Witness-and-secure strategy

What if E \ E∆ 6= ∅?
arbitrary adversaries can produce bad behaviors

add the possibility to react using a worst-case winning
strategy (existing everywhere thanks to the preprocessing)

� guarantees worst-case
� no impact on expected value (probability zero)
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Back to the algorithm

So we know we should only use WECs and we know how to play
ε-optimally when starting in a WEC. What remains to settle?

� Determine which WECs to reach and how!

� Key idea: define a global strategy that will go towards the
highest valued WECs and avoid LECs
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Global strategy via modified MDP
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1 Modify weights:

∀ e = (s1, s2) ∈ E , w ′(e) :=

{
w(e) if ∃ U ∈ Uw s.t. {s1, s2} ⊆ U,

0 otherwise.
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2 Compute memoryless optimal expectation strategy λe1 on P ′

� the probability to be in a good WEC (here, U2) after N steps
tends to one when N →∞
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Global strategy via modified MDP

3 λglb1 ∈ ΛPF
1 (G ):

(a) Play λe1 ∈ ΛPM
1 (G ) for N steps.

(b) Let s ∈ S be the reached state.

(b.1) If s ∈ U ∈ Uw, play corresponding λwns
1 ∈ ΛPF

1 (G) forever.
(b.2) Else play λwc

1 ∈ ΛPM
1 (G) forever.

� Parameter N ∈ N can be chosen so that overall expectation is
arbitrarily close to optimal in P ′, or equivalently, optimal for
BWC strategies in P

� Algorithm BWC MP answers Yes iff ν∗ > ν
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Correctness and completeness

Algorithm BWC MP is

correct: if answer is Yes, then λglb1 satisfies the BWC
problem for the given thresholds

complete: if answer is No, then the BWC problem cannot be
satisfied by a finite-memory strategy
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BWC MP problem: bounds

Complexity

� algorithm in NP ∩ coNP (P if MP games proved in P)
� lower bound via reduction from MP games

s2s1s3

1
2

1
2

1

1

0

−X

X + 5

Memory

� pseudo-polynomial upper bound via global strategy
� matching lower bound via family (G (X ))X∈N0 requiring

polynomial memory in W = X + 5 to satisfy the BWC problem
for thresholds (0, ν ∈ ]1, 5/4[)

; need to use (s1, s3) infinitely often for E but need pseudo-poly.
memory to counteract −X for the WC requirement
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Shortest path - truncated sum

Assume strictly positive integer weights, w : E → N0

Let T ⊆ S be a target set that P1 wants to reach with a path
of bounded value (cf. introductory example)
� inequalities are reversed, ν < µ

TST (π = s0s1s2 . . . ) =
∑n−1

i=0 w((si , si+1)), with n the first
index such that sn ∈ T , and TST (π) =∞ if ∀ n, sn 6∈ T

Games: worst-case threshold problem

Memoryless optimal strategies as cycles are to be avoided, and the
problem is in P, solvable using attractors and computation of the
worst cost.

MDPs: expected value threshold problem [BT91, dA99]

Memoryless optimal strategies exist and the problem is in P.
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BWC SP problem: overview

Theorem (algorithm)

The BWC problem for the shortest path can be solved in
pseudo-polynomial time: polynomial in the size of the game
graph, the Moore machine for the stochastic model of the
adversary and the encoding of the expected value threshold, and
polynomial in the value of the worst-case threshold.

Theorem (memory bounds)

Pseudo-polynomial memory may be necessary and is always
sufficient to satisfy the BWC problem for the shortest path.

Theorem (complexity lower bound)

The BWC problem for the shortest path is NP-hard.
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Pseudo-polynomial algorithm: sketch

s1 s2

s3

1
2

1
2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q
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s1 s2

s3

1
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1
2

1

15

1

1 Start from G = (G, S1,S2), G = (S ,E ,w), T = {s3},
M(λstoch

2 ), µ = 8, and ν ∈ Q

2 Build G ′ by unfolding G, tracking the current sum up to the
worst-case threshold µ, and integrating it in the states of G′.
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Pseudo-polynomial algorithm: sketch

3 Compute R, the attractor of T with cost < µ = 8

4 Consider Gµ = G ′ � R
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Pseudo-polynomial algorithm: sketch

5 Consider P = Gµ ⊗M(λstoch
2 )

6 Compute memoryless optimal expectation strategy

7 If ν∗ < ν, answer Yes, otherwise answer No

s1, 0 s2, 1

Here, ν∗ = 9/2

s1, 2

s2, 3 s1, 4 s2, 5 s1, 6 s2, 7 s1,>

s3, 2

s3, 4 s3,> s3, 6

s3, 5 s3, 7

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

5

1

1

1

1

5

5

1 1

1

1

5

1

1

1 1

5

1

Beyond Worst-Case Synthesis Bruyère, Filiot, Randour, Raskin 36 / 44



Context BWC Synthesis Mean-Payoff Shortest Path Conclusion

Memory bounds

� Upper bound provided by synthesized strategy

� Lower bound given by family of games (G (µ))µ∈{13+k·4|k∈N}
requiring memory linear in µ
; play (s1, s2) exactly

⌊
µ
4

⌋
times and then switch to (s1, s3) to

minimize expected value while ensuring the worst-case

s1 s2

s3

1
2

1
2

1

1

⌊µ
2

⌋

1

1
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Complexity lower bound: NP-hardness

Truly-polynomial algorithm very unlikely. . .

Reduction from the K th largest subset problem
� commonly thought to be outside NP as natural certificates are

larger than polynomial [JK78, GJ79]

K th largest subset problem

Given a finite set A, a size function h : A→ N0 assigning strictly
positive integer values to elements of A, and two naturals
K , L ∈ N, decide if there exist K distinct subsets Ci ⊆ A,
1 ≤ i ≤ K , such that h(Ci ) =

∑
a∈Ci

h(a) ≤ L for all K subsets.

Build a game composed of two gadgets
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Random subset selection gadget

a1 a2 a3 an choice

1
2

1
2

1
2

1
2

1
2

1
2

hn(a1) hn(a2) hn(an)

1 1 1

� Stochastically generates paths representing subsets of A: an
element is selected in the subset if the upper edge is taken
when leaving the corresponding state

� All subsets are equiprobable
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Choice gadget

choice

swc

se

target

0

1

1

1

1

0

x3

x2

x1

� se leads to lower expected values but may be dangerous for
the worst-case requirement

� swc is always safe but induces an higher expected cost
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Crux of the reduction

Establish that there exist values for thresholds and weights s.t.

(i) an optimal (i.e., minimizing the expectation while
guaranteeing a given worst-case threshold) strategy for P1

consists in choosing state se only when the randomly
generated subset C ⊆ A satisfies h(C ) ≤ L;

(ii) this strategy satisfies the BWC problem if and only if there
exist K distinct subsets that verify this bound.
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In a nutshell

BWC framework combines worst-case and expected value
requirements

� a natural wish in many practical applications
� few existing theoretical support

Mean-payoff: additional modeling power for no complexity
cost (decision-wise)

Shortest path: harder than the worst-case, pseudo-polynomial
with NP-hardness result

In both cases, pseudo-polynomial memory is both sufficient
and necessary

� but strategies have natural representations based on states of
the game and simple integer counters
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Beyond BWC synthesis?

Possible future works include

study of other quantitative objectives,

extension of our results to more general settings
(multi-dimension [CDHR10, CRR12], decidable classes of
games with imperfect information [DDG+10], etc),

application of the BWC problem to various practical cases.

Thanks!
Do not hesitate to discuss with us!
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