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General context

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Qualitative and quantitative specifications.

Focus on multi-criteria quantitative models
� to reason about trade-offs and interplays.
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Synthesis via two-player graph games

system
description

environment
description

informal
specification

model as
a game

model as
winning

objectives

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy =
controller

no yes

1 Can one player guarantee
victory?

2 Can we decide which one?

3 How complex his strategy
needs to be?
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Quantitative games on graphs

2 2

5

−1 7
−4

Then, (2, 5, 2)ω

Graph G = (S ,E ,w) with w : E → Z

Deterministic transitions

Two-player game G = (G, S1,S2)

� P1 states =
� P2 states =

Plays have values

� f : Plays(G)→ R ∪ {−∞, ∞}

Players follow strategies

� λi : Prefsi (G )→ D(S)
� Finite memory ⇒ stochastic output Moore

machine M(λi ) = (Mem,m0, αu, αn)
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Markov decision processes

1
2

1
2

2 2

5

−1 7
−4

MDP P = (G, S1,S∆,∆) with ∆: S∆ → D(S)

� P1 states =
� stochastic states =

MDP = game + strategy of P2

� P = G [λ2]
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Markov chains

1
2

1
2

1
4
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4
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MC M = (G, δ) with δ : S → D(S)

MC = MDP + strategy of P1

= game + both strategies

� M = P[λ1] = G [λ1, λ2]

Event A ⊆ Plays(G)

� probability PM
sinit

(A)

Measurable f : Plays(G)→ R ∪ {−∞, ∞}
� expected value EM

sinit
(f )
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Winning semantics and decision problems

Qualitative objectives - φ ⊆ Plays(G )

� λ1 surely winning : ∀λ2 ∈ Λ2, OutsG (sinit, λ1, λ2) ⊆ φ
� λ1 almost-surely winning : ∀λ2 ∈ Λ2, PG [λ1,λ2]

sinit (φ) = 1

Quantitative objectives - f : Plays(G )→ R ∪ {−∞, ∞}
� worst-case threshold problem, µ ∈ Q:

∃?λ1 ∈ Λ1,∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) ≥ µ

� expected value threshold problem (MDP), ν ∈ Q:

∃?λ1 ∈ Λ1,EP[λ1]
sinit

(f ) ≥ ν
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Classical qualitative objectives

ReachG (T ) = {π = s0s1s2 . . . ∈ Plays(G ) | ∃ i ∈ N, si ∈ T}

BuchiG (T ) = {π = s0s1s2 . . . ∈ Plays(G ) | Inf(π) ∩ T 6= ∅}

ParityG = {π = s0s1s2 . . . ∈ Plays(G ) | Par(π) mod 2 = 0}
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Classical quantitative objectives and value functions

Total-payoff : TP(π) = lim inf
n→∞

i=n−1∑
i=0

w((si , si+1))

Mean-payoff : MP(π) = lim inf
n→∞

1

n

i=n−1∑
i=0

w((si , si+1))

Shortest path: truncated sum up to first visit of T ⊆ S

Energy : keep the running sum positive at all times
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Single-criterion models - known results

reachability Büchi parity

games

sure sem.

complexity P-c. UP ∩ coUP

P1 mem.
pure memoryless

P2 mem.

mdps

almost-sure sem.

complexity P-c.

P1 mem. pure memoryless

TP MP SP EG

games

worst-case

complexity UP ∩ coUP P-c. UP ∩ coUP

P1 mem.
pure memoryless

P2 mem.

mdps

expected value

complexity P-c.
n/a

P1 mem. pure memoryless
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Contributions

Shift from single-criterion models to multi-criteria ones.
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Combining two classical models

Games
→ antagonistic adversary
→ guarantees on worst-case

MDPs
→ stochastic adversary
→ optimize expected value

BWC synthesis
→ ensure both

∧

Studied
value functions

Mean-Payoff Shortest Path
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Example: going to work

home

station traffic

waiting
room

work

1
10

9
10

2
10

7
10

1
10

train
2

car
1

back home
1

bicycle
45

delay
1

wait
4

light
20

medium
30

heavy
70

departs
35

� Weights = minutes

� Goal: minimize our expected
time to reach “work”

� But, important meeting in
one hour! Requires strict
guarantees on the worst-case
reaching time.
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car
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back home
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bicycle
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delay
1

wait
4

light
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medium
30

heavy
70

departs
35

� Optimal expectation strategy:
car.

E = 33, WC = 71 > 60.

� Optimal worst-case strategy:
bicycle.

E = WC = 45 < 60.

� Sample BWC strategy: try
train up to 3 delays then
switch to bicycle.

E ≈ 37.56, WC = 59 < 60.
Optimal E under WC
constraint
Uses finite memory
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Beyond worst-case synthesis

Formal definition

Given

• G = (G,S1,S2), sinit ∈ S ,

• a finite-memory stochastic model λstoch
2 ∈ ΛF

2 of the adversary,

• a measurable value function f : Plays(G)→ R ∪ {−∞, ∞}, and two
thresholds µ, ν ∈ Q,

the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF

1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) > µ (1)

EG [λ1,λ
stoch
2 ]

sinit (f ) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts

Synthesis in Multi-Criteria Quantitative Games M. Randour (advisors: V. Bruyère & J.-F. Raskin) 16 / 34



Quantitative Games Beyond Worst-Case Synthesis Multi-Dimension Objectives Window Objectives Conclusion

Beyond worst-case synthesis

Formal definition

Given

• G = (G,S1,S2), sinit ∈ S ,

• a finite-memory stochastic model λstoch
2 ∈ ΛF

2 of the adversary,

• a measurable value function f : Plays(G)→ R ∪ {−∞, ∞}, and two
thresholds µ, ν ∈ Q,

the beyond worst-case (BWC) problem asks to decide if P1 has a finite-memory
strategy λ1 ∈ ΛF

1 such that{
∀λ2 ∈ Λ2, ∀π ∈ OutsG (sinit, λ1, λ2), f (π) > µ (1)

EG [λ1,λ
stoch
2 ]

sinit (f ) > ν (2)

and the BWC synthesis problem asks to synthesize such a strategy if one exists.

Notice the highlighted parts

Synthesis in Multi-Criteria Quantitative Games M. Randour (advisors: V. Bruyère & J.-F. Raskin) 16 / 34



Quantitative Games Beyond Worst-Case Synthesis Multi-Dimension Objectives Window Objectives Conclusion

Related work

Common philosophy: avoiding outlier outcomes

1 Our strategies are strongly risk averse

� avoid risk at all costs and optimize among safe strategies

2 Other notions of risk ensure low probability of risked behavior
[WL99, FKR95]

� without worst-case guarantee
� without good expectation

3 Trade-off between expectation and variance [BCFK13, MT11]

� statistical measure of the stability of the performance
� no strict guarantee on individual outcomes
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Mean-payoff value function

worst-case expected value BWC

complexity NP ∩ coNP P NP ∩ coNP

memory memoryless memoryless pseudo-polynomial

� Additional modeling power for free

Synthesis in Multi-Criteria Quantitative Games M. Randour (advisors: V. Bruyère & J.-F. Raskin) 18 / 34
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Philosophy of the algorithm

� Classical worst-case and expected value results and algorithms
as nuts and bolts

� Screw them together in an adequate way

Three key ideas

1 To characterize the expected value, look at end-components
(ECs)

2 Winning ECs vs. losing ECs: the latter must be avoided to
preserve the worst-case requirement

3 Inside a WEC, we have an interesting way to play. . .

=⇒ Let’s focus on a WEC
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Inside a WEC

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9
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s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

Game interpretation

� Worst-case threshold is µ = 0

� All states are winning: memoryless optimal worst-case
strategy λwc1 ∈ ΛPM

1 (G ), ensuring µ∗ = 1 > 0
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Game interpretation

� Worst-case threshold is µ = 0

� All states are winning: memoryless optimal worst-case
strategy λwc1 ∈ ΛPM

1 (G ), ensuring µ∗ = 1 > 0

MDP interpretation

� Memoryless optimal expected value strategy λe1 ∈ ΛPM
1 (P)

achieves ν∗ = 2
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of thresholds (µ = 0, ν) can we
achieve?
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A cornerstone of our approach

s5s6s7

1
2

1
2

1

1

1

0

0

−1

9

BWC problem: what kind of thresholds (µ = 0, ν) can we
achieve?

Key result

For all ε > 0, there exists a finite-memory strategy of P1 that
satisfies the BWC problem for the thresholds pair (0, ν∗ − ε).

� We can be arbitrarily close to the optimal expectation
while ensuring the worst-case
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∑
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E = ν∗ = 2
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Outcomes of the form

WC > 0
E =??

K steps

∑
> 0

∑
> 0

∑
≤ 0

L steps

compensate
∑

> 0
∑
≤ 0 compensate

What we want K , L→∞

E = ν∗ = 2

L = linear(K )

P( )→ 0 exp. fast! [Tra09, GO02]
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Shortest path

Strictly positive integer weights, w : E → N0

P1 wants to minimize its total cost up to target

� inequalities are reversed

worst-case expected value BWC

complexity P P pseudo-poly. / NP-hard

memory memoryless memoryless pseudo-poly.

� Problem inherently harder than worst-case and expectation.

� NP-hardness by K th largest subset problem [JK78, GJ79]
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Key difference with MP case

Useful observation

The set of all worst-case winning strategies for the shortest path
can be represented through a finite game.

Sequential approach solving the BWC problem:

1 represent all WC winning strategies,

2 optimize the expected value within those strategies.
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Multi-dimension games
EG MP MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. NP ∩ coNP ??

P1 mem. pure finite pure infinite
??

P2 mem. pure memoryless

� Natural extension
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Multi-dimension games
EG MP MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. NP ∩ coNP ??

P1 mem. pure finite pure infinite
??

P2 mem. pure memoryless

� Natural extension, increased complexity.

� Question: what about TP?
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Multi-dimension games
EG MP MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. NP ∩ coNP undec.

P1 mem. pure finite pure infinite
-

P2 mem. pure memoryless

Theorem

Total-payoff games are undecidable for k ≥ 5.

� Reduction from the halting problem in 2CMs.

� Open for k = 2, 3 and 4.
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Multi-dimension games
EG MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. undec.

P1 mem. pure finite
-

P2 mem. pure memoryless

� We want finite-memory controllers.

� Restrict P1 to finite-memory strategies.

Lemma [CDHR10, VCD+12]

The answer to the worst-case mean-payoff threshold problem is
Yes iff the answer to the unknown initial credit problem is Yes.
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P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. undec.

P1 mem. pure finite
-

P2 mem. pure memoryless

Question: precise memory bounds?

� exponential memory sufficient and necessary

Question: efficient synthesis algorithm?

� EXPTIME algorithm
� symbolic and incremental
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Multi-dimension games
EG MP TP TP

one-dim.

complexity NP ∩ coNP

P1 mem.
pure memoryless

P2 mem.

k-dim.

complexity coNP-c. undec.

P1 mem. pure finite
-

P2 mem. pure memoryless

Question: precise memory bounds?

� exponential memory sufficient and necessary

Question: efficient synthesis algorithm?

� EXPTIME algorithm
� symbolic and incremental

Results for EG / MP + parity.
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Trading finite memory for randomness

Question: when and how can P1 trade his pure finite-memory
strategy for an equally powerful randomized memoryless one?

� relax to almost-sure semantics

Multi energy
Multi MP (parity) MP parity

and energy parity

one-player ×
√ √

two-player × ×
√
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Why an alternative to MP/TP?

No known polynomial-time algorithm in one-dimension.

TP is undecidable in multi-dimension.

No timing guarantee

� long-run behavior vs. time frames.
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Window objectives: key idea
Sum

Time

Window of fixed size sliding along a play
; defines a local finite horizon.

Objective: see a local MP ≥ 0 before hitting the end of the
window

; needs to be verified at every step.

� Intuition: local deviations from the threshold must be
compensated in a parametrized # of steps.
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Multiple variants

� Maximal window size fixed or quantified existentially
(Bounded Window)

� Prefix-independent or not

Conservative approximations in one-dim.

Any window obj. ⇒ BW ⇒ MP ≥ 0
BW ⇐ MP > 0
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Results overview

one-dimension k-dimension
complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.
≤ linear(|S | · lmax)

PSPACE-h.
polynomial window EXP-easy

exponential
WMP: fixed

P(|S |,V , lmax) EXP-c.
arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P.

� For multi-dim. games with fixed windows, we are decidable.

� Window obj. provide timing guarantees.
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Results overview: advantages
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polynomial window EXPTIME-easy
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P(|S |,V , lmax) EXPTIME-c.
arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P.
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Summary

Study of multi-criteria quantitative games.

1 Beyond worst-case synthesis
� worst-case and expected value
� additional modeling power for free in MP case
� complexity leap for SP

2 Multi-dimension TP, MP and EG + parity
� undecidability of TP
� tight memory bounds for MP and EG + parity
� optimal synthesis algorithm
� memory vs. randomness

3 Window objectives
� timing guarantees
� improved tractability
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Future work

Beyond worst-case extensions
� more general games (e.g., stochastic games)
� multi-dimension
� percentile performances

Mixed objectives

Window objectives
� stochastic context
� synchronous closing
� (finitary) parity [CHH09]
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Thanks!
To my advisors, Véronique Bruyère and Jean-François Raskin,

to my other co-authors, Krishnendu Chatterjee, Laurent Doyen and
Emmanuel Filiot,

and to you, members of the jury, for your precious time!
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