Simplicity Lies in the Eye of the Beholder

A Strategic Perspective on Controllers in Reactive Synthesis

Mickael Randour

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

October 3, 2025

Reachability Problems 2025

Special thanks to the Delegación General Valonia-Bruselas en España.

The talk in one slide

Controller synthesis

Strategies = **formal blueprints** for real-world controllers.

Randomness

Randomness

Controller synthesis

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- ▶ easier to understand,
- > cheaper to produce and maintain.

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

Memory

But how to define complexity and how to measure it?

Strategies = **formal blueprints** for real-world controllers.

Simpler is better:

- > cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

 \hookrightarrow That is our topic of the today.

The talk in one more slide

Randomness

The talk in one **more** slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

game models,

Controller synthesis

- strategy models,
- objectives.
- decision problems. . .

The talk in one **more** slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▶ game models,
- > strategy models,
- objectives,
- decision problems...

There will be some hand-waving and approximations to keep the talk high level.

 \hookrightarrow Check the paper for more details.

The talk in one **more** slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- > strategy models,
- objectives,

There will be some hand-waving and approximations to keep the talk high level.

 \hookrightarrow Check the paper for more details.

 \hookrightarrow I will focus on recent work with marvelous co-authors.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machine

Controller synthesis: a game-theoretic approach

Controller synthesis

Controller synthesis: a game-theoretic approach

A plethora of models and objectives exist. 1

Our focus here: how complex strategies need to be?

¹Randour, "Automated Synthesis of Reliable and Efficient Systems Through Game Theory: A Case Study", 2013; Bloem, Chatterjee, and Jobstmann, "Graph Games and Reactive Synthesis", 2018; Fijalkow et al., Games on Graphs: From Logic and Automata to Algorithms, 2025.

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play:

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c: E \to C$.

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: $abbd \dots \in C^{\omega}$

Controller synthesis

00000000

A two-player turn-based finite arena $\mathcal{A} = (V_{\square}, V_{\square}, E)$ with no deadlock.

Color function $c : F \to C$

 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Usual interpretation

 \mathcal{P}_{\cap} (the system to control) tries to satisfy its specification while \mathcal{P}_{\square} (the environment) tries to prevent it from doing so.

Controller synthesis

They are encoded as some kind of *objective* defined using colors. Three main flavors:

Randomness

Specifications

Controller synthesis

00000000

They are encoded as some kind of *objective* defined using colors. Three main flavors:

1 A winning condition: a set of winning plays that \mathcal{P}_{\cap} tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.

Specifications

Controller synthesis

00000000

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- 2 A payoff function to optimize, assuming $C \subset \mathbb{Q}$. E.g., the discounted sum function, defined as $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$ for some discount factor $\gamma \in (0,1)$.

Specifications

Controller synthesis

റ**ററ∙റററ**റ്റ

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0c_1c_2... \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- 2 A payoff function to optimize, assuming $C \subset \mathbb{Q}$. E.g., the discounted sum function, defined as $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$ for some discount factor $\gamma \in (0,1)$.
- 3 A preference relation defines a total preorder over sequences of colors, thus generalizing both previous concepts.

Controller synthesis

Player \mathcal{P}_{∇} chooses outgoing edges following a strategy

$$\sigma_{
abla} \colon (V E)^* V_{
abla} o E$$

consistent with the underlying graph.

Randomness

Strategies

Player \mathcal{P}_{∇} chooses outgoing edges following a strategy

$$\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to E$$

consistent with the underlying graph.

 \hookrightarrow We are interested in the complexity of **optimal strategies**.

Strategies

Controller synthesis

00000000

Player \mathcal{P}_{∇} chooses outgoing edges following a strategy

$$\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to E$$

consistent with the underlying graph.

 \hookrightarrow We are interested in the complexity of **optimal strategies**.

Optimal strategies (using a preference relation □)

A strategy σ_{\bigcirc} of \mathcal{P}_{\bigcirc} is optimal if its worst-case outcome (i.e., considering all strategies of \mathcal{P}_{\square}) is at least as good, with respect to \sqsubseteq , as that of any other strategy σ'_{\bigcirc} .

MDPs & stochastic games

Why?

In many real-world scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

MDPs & stochastic games

Controller synthesis

Two-player (deterministic) game.

$$V = V_{\bigcirc} \biguplus V_{\square}.$$

MDPs & stochastic games

Controller synthesis

000000000

Either \mathcal{P}_{\bigcirc} aims to maximize

- $\triangleright \mathbb{P}^{\sigma} \cap [W]$ for some winning condition W,
- \triangleright or $\mathbb{E}^{\sigma} \circ [f]$ for some payoff function f.

Markov decision process.

$$V = V_{\bigcirc} \biguplus V_{\triangle}.$$

MDPs & stochastic games

Controller synthesis

00000000

Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus \bigvee_{\square}.$$

Either \mathcal{P}_{\square} aims to maximize, against the adversary \mathcal{P}_{\square} ,

- $\triangleright \mathbb{P}^{\sigma_{\bigcirc},\sigma_{\square}}[W]$ for some winning condition W,
- \triangleright or $\mathbb{E}^{\sigma_{\bigcirc},\sigma_{\square}}[f]$ for some payoff function f.

MDPs & stochastic games

Stochastic game.

$$V = V_{\bigcirc} \biguplus V_{\triangle} \biguplus \bigvee_{\square}.$$

Actions

Controller synthesis

We often use actions instead of stochastic vertices.

Multiple objectives

Controller synthesis

00000000

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

Seeing a and b infinitely often requires memory, but seeing only one does not (Büchi objective).

Multiple objectives

Controller synthesis

00000000

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

Seeing a and b infinitely often requires memory, but seeing only one does not (Büchi objective).

dominated by another.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,
- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Finite memory if $|M| < \infty$, memoryless if |M| = 1.

Randomness

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states.
- m_{init} is the *initial state*.

Controller synthesis

00000000

- $\triangleright \alpha_{\mathsf{n} \times \mathsf{t}} : M \times V \to E$ is the next-action function.
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Randomness

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,
- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the *initial state*,

Controller synthesis

00000000

- $\triangleright \alpha_{n\times t}: M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{\text{up}} : M \times E \rightarrow M$ is the update function.

Randomness

The ice cream conundrum

Controller synthesis

This Mealy machine uses chaotic (or general) memory: it looks at the actual vertices of the game to update its memory.

The ice cream conundrum

Controller synthesis

00000000

This Mealy machine uses chaotic (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: chromatic memory, with or without ε -transitions, with different types of randomness, etc.

Randomness

Randomness

The ice cream conundrum

Controller synthesis

00000000

This Mealy machine uses chaotic (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: chromatic memory, with or without ε -transitions, with different types of randomness, etc.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machine

Some amazing co-authors

Section mostly based on joint work with Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, and Pierre Vandenhove.²

²Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022; Bouyer, Oualhadj, et al., "Thera-Independent Finite-Memory Determinacy in Stochastic Games", 2023; Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Memoryless strategies

Functions $\sigma_{\nabla} \colon V_{\nabla} \to E$.

- □ Equivalently, Mealy machines with one state.
- > Arguably, the simplest kind of strategies.

Randomness

Memoryless strategies

Functions $\sigma_{\nabla} : V_{\nabla} \to E$.

- □ Equivalently, Mealy machines with one state.
- > Arguably, the simplest kind of strategies.
- Sufficient to play optimally for most *single* objectives in (stochastic) games: reachability, parity, mean-payoff, discounted sum, etc.

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \sqsubseteq iff \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Randomness

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \sqsubseteq iff \sqsubseteq and \sqsubseteq^{-1} are monotone and selective.

Corollary: one-to-two-player lift

If \sqsubseteq is such that

- ${f 1}$ in all ${\cal P}_{\bigcirc}$ -arenas, ${\cal P}_{\bigcirc}$ has optimal memoryless strategies,
- ${\bf 2}$ in all ${\cal P}_{\square}\text{-arenas},~{\cal P}_{\square}$ has optimal memoryless strategies,

then **both** players have optimal memoryless strategies in all **two-player** arenas.

⇒ Extremely useful as analyzing one-player games (i.e., graphs) is much easier.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Why?

Why?

- One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

Why?

- One would hope for an equivalent of Gimbert and Zielonka's result for finite memory.

Unfortunately, it does not hold.

Controller synthesis

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.

Randomness

Controller synthesis

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.

But the two-player one is not! $\implies \mathcal{P}_{\cap}$ needs infinite memory to win.

A new frontier

We focus on arena-independent chromatic memory structures.

A new frontier

Controller synthesis

We focus on arena-independent chromatic memory structures.

Example for $C = \{a, b, c\}$ and objective $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$.

A new frontier

Controller synthesis

We focus on arena-independent chromatic memory structures.

Example for $C = \{a, b, c\}$ and objective $B\ddot{u}chi(a) \cap B\ddot{u}chi(b)$.

This memory structure suffices in all arenas, i.e., it is always possible to find a suitable $\alpha_{\rm nyt}$ to build an optimal Mealy machine.

Memory

00000000000

A new frontier

We focus on arena-independent chromatic memory structures.

Our characterization⁴

We obtain an equivalent to Gimbert and Zielonka's for finite memory:

- a characterization through the concepts of \mathcal{M} -monotony and \mathcal{M} -selectivity,
- a one-to-two-player lift.

⁴Bouver, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

Randomness

Extension to stochastic games

We lift⁵ this result to pure arena-independent finite-memory strategies in stochastic games:

- **1** characterization based on generalizations of \mathcal{M} -monotony and \mathcal{M} -selectivity,
- 2 one-to-two-player lift, from MDPs to stochastic games.

⁵Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023.

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be higher in infinite arenas: e.g., mean-payoff objectives require infinite memory.

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be higher in infinite arenas: e.g., mean-payoff objectives require infinite memory.

The case of ω -regular objectives 6

If a winning condition W is ω -regular, then it admits finite-memory optimal strategies in all (infinite) arenas.

⁶Mostowski, "Regular expressions for infinite trees and a standard form of automata", 1985; Zielonka, "Infinite games on finitely coloured graphs with applications to automata on infinite trees", 1998.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure \mathcal{M} suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure \mathcal{M} suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

Corollaries

- \blacksquare Game-theoretical characterization of $\omega\text{-regularity}.$
- 2 One-to-two-player lift for infinite arenas.

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Other criteria and characterizations

There is a plethora of results related to memory (models vary). Non-exhaustive list:

- criteria for half-positionality, ¹⁰
- → one-to-multi-objective lift, ¹¹

→ Find more about chromatic memory in our survey. ¹³

⁸Casares and Ohlmann, "Characterising memory in infinite games", 2025.

⁹Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2024; Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023; Casares and Ohlmann, "Positional ω-regular languages", 2024.

¹⁰Kopczyński, "Half-positional Determinacy of Infinite Games", 2008.

¹¹Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

¹²Le Roux and Pauly, "Extending Finite Memory Determinacy to Multiplayer Games", 2016.

¹³Bouyer, Randour, and Vandenhove, "The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs", 2022.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machine

The amazing Mr. Main

Section mostly based on joint work with James C. A. Main 14

Randomness

¹⁴ Main and Randour. "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024; Main and Randour, "Mixing Any Cocktail with Limited Ingredients: On the Structure of Payoff Sets in Multi-Objective MDPs and its Impact on Randomised Strategies", 2025.

A pure strategy is a function $\sigma_{\nabla} : (V E)^* V_{\nabla} \to E$.

Randomness

A pure strategy is a function $\sigma_{\nabla}: (V E)^* V_{\nabla} \to E$.

We may need randomness to deal with, e.g.,

multiple objectives,

Controller synthesis

- concurrent games.
- imperfect information.

Objective:
$$\mathbb{P}^{\sigma}$$
 [Reach(a)] $\geq \frac{1}{2} \wedge \mathbb{P}^{\sigma}$ [Reach(b)] $\geq \frac{1}{2}$

 \hookrightarrow Achievable by tossing a coin in v_0 .

Controller synthesis

Introducing randomness in strategies (2/2)

Several ways of randomizing σ_{∇} : $(V E)^* V_{\nabla} \to E$:

Randomness

Several ways of randomizing $\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to E$:

Behavioral strategies

Controller synthesis

$$\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to \mathcal{D}(E)$$

Several ways of randomizing σ_{∇} : $(V E)^* V_{\nabla} \to E$:

Behavioral strategies

Controller synthesis

$$\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to \mathcal{D}(E)$$

Mixed strategies

$$\mathcal{D}(\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to E)$$

Several ways of randomizing $\sigma_{\nabla}: (V E)^* V_{\nabla} \to E$:

Behavioral strategies

Controller synthesis

$$\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to \mathcal{D}(E)$$

Mixed strategies

$$\mathcal{D}(\sigma_{\nabla} \colon (V E)^* V_{\nabla} \to E)$$

General strategies

$$\mathcal{D}(\sigma_{\nabla}\colon (VE)^*V_{\nabla}\to \mathcal{D}(E))$$

Several ways of randomizing σ_{∇} : $(V E)^* V_{\nabla} \to E$:

Behavioral strategies

 $\sigma_{\nabla} : (V E)^* V_{\nabla} \to \mathcal{D}(E)$

Mixed strategies

 $\mathcal{D}(\sigma_{\nabla} : (V E)^* V_{\nabla} \to E)$

General strategies

$$\mathcal{D}(\sigma_\nabla\colon (V\,E)^*V_\nabla\to\mathcal{D}(E))$$

Kuhn's theorem 15

Controller synthesis

All three classes are equivalent in games of perfect recall.

 \hookrightarrow Requires access to infinite memory and infinite support for distributions.

¹⁵Aumann. "Mixed and Behavior Strategies in Infinite Extensive Games", 1964; Bertrand, Genest, and Gimbert, "Qualitative Determinacy and Decidability of Stochastic Games with Signals", 2017.

What about finite-memory strategies?

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states,
- $m_{\rm init}$ is the initial state,
- $\triangleright \alpha_{\mathsf{nxt}} \colon M \times V \to E$ is the next-action function,
- $\triangleright \alpha_{up} : M \times E \rightarrow M$ is the update function.

What about finite-memory strategies?

Mealy machine $\mathcal{M} = (M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- → M is the set of memory states.
- \triangleright $m_{\rm init}$ is the initial state.

Controller synthesis

- $\triangleright \alpha_{\mathsf{n} \times \mathsf{t}} : M \times V \to E$ is the next-action function.
- $\triangleright \alpha_{\text{up}} : M \times E \to M$ is the update function.

Stochastic Mealy machine $\mathcal{M} = (M, \mu_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}})$:

- \triangleright M is the set of memory states.
- $\triangleright \mu_{\text{init}} \in \mathcal{D}(M)$ is the initial distribution.
- $\triangleright \ \alpha_{\mathsf{nxt}} \colon M \times V \to \mathcal{D}(E)$ is the next-action function.
- $\triangleright \alpha_{up} : M \times E \to \mathcal{D}(M)$ is the update function.
 - ⇒ Three ways to add randomness: initialization, outputs, and updates.

Controller synthesis

Classes XYZ with X, Y, $Z \in \{D, R\}$, where D stands for deterministic and R for random, and

- X characterizes the initialization.
- Y characterizes the next-action function,
- Z characterizes the update function.

¹⁶ Main and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

Randomness

0000000000

Taxonomy (2/2)

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

Taxonomy (2/2)

Controller synthesis

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

Randomness

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

Randomness

We consider two goals:

Controller synthesis

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

We consider two goals:

Controller synthesis

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

Randomness

We consider two goals:

Controller synthesis

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

From home, take the train or bike to reach work.

We are interested in the structure of this payoff set.

Our result 17

For good payoff functions (\sim expectancy is well-defined),

- II the set of achievable payoffs coincide with the convex hull of pure payoffs:
- \square we can approximate any strategy ε -closely by mixing a bounded number of pure strategies.

¹⁷Main and Randour, "Mixing Any Cocktail with Limited Ingredients: On the Structure of Payoff Sets in Multi-Objective MDPs and its Impact on Randomised Strategies", 2025.

We are interested in the structure of this payoff set.

Our result 17

For good payoff functions (\sim expectancy is well-defined),

- II the set of achievable payoffs coincide with the convex hull of pure payoffs:
- \square we can approximate any strategy ε -closely by mixing a bounded number of pure strategies.

RDD-randomization is sufficient in most multi-objective MDPs.

¹⁷Main and Randour, "Mixing Any Cocktail with Limited Ingredients: On the Structure of Payoff Sets in Multi-Objective MDPs and its Impact on Randomised Strategies", 2025.

Trading memory for randomness

Controller synthesis

Recall this generalized Büchi game asking to see a and b infinitely often:

We need (a two-state) memory to win it with *pure* strategies.

Trading memory for randomness

Recall this generalized Büchi game asking to see a and b infinitely often:

We need (a two-state) memory to win it with pure strategies.

But a (behavioral) randomized memoryless strategy suffices to win with **probability one**: playing v_1 and v_2 with non-zero probability ensures it.

Randomness

Trading memory for randomness

Controller synthesis

Recall this generalized Büchi game asking to see a and b infinitely often:

We need (a two-state) memory to win it with pure strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing v_1 and v_2 with non-zero probability ensures it.

→ Memory can be traded for randomness for some classes of games/objectives.¹⁸

¹⁸Chatterjee, de Alfaro, and Henzinger, "Trading Memory for Randomness", 2004; Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

- 1 Controller synthesis
- 2 Memory
- 3 Randomness
- 4 Beyond Mealy machines

Leitmotiv

Simpler strategies are better (for controller synthesis).

Leitmotiv

Controller synthesis

Simpler strategies are better (for controller synthesis).

But what is simple?

Leitmotiv

Controller synthesis

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

Leitmotiv

Controller synthesis

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

 \hookrightarrow Let us question that.

Not all memoryless strategies are created equal

We want to reach v_3 .

Intuitively, the blue strategy seems simpler than the green one.

Not all memoryless strategies are created equal

We want to reach v_3 .

Controller synthesis

Intuitively, the blue strategy seems simpler than the green one.

> Yet both are represented as a trivial Mealy machine with a single memory state.

Not all memoryless strategies are created equal

We want to reach v_3 .

Controller synthesis

Intuitively, the blue strategy seems simpler than the green one.

- > Yet both are represented as a trivial Mealy machine with a single memory state.
- The representation of the next-action function is mostly overlooked (basically a huge table).

Not all memoryless strategies are created equal

We want to reach v_3 .

Intuitively, the blue strategy seems simpler than the green one.

- > Yet both are represented as a trivial Mealy machine with a single memory state.
- The representation of the next-action function is mostly overlooked (basically a huge table).
 - → Memoryless strategies can already be too large to represent in practice!

Controller synthesis

Multi-objectives games involving payoffs often require exponential memory. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

Controller synthesis

Multi-objectives games involving payoffs often require exponential memory. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

We need a pseudo-polynomial Mealy machine because it lacks structure.

Controller synthesis

Multi-objectives games involving payoffs often require exponential memory. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

- We need a pseudo-polynomial Mealy machine because it lacks structure.
 - \hookrightarrow Polynomial representation if we allow the use of counters.

Multi-objectives games involving payoffs often require exponential memory. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

- > We need a pseudo-polynomial Mealy machine because it lacks structure.
 - \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

Controller synthesis

We should explore novel notions of simplicity, and consider alternative representations of strategies/controllers.

Multi-objectives games involving payoffs often require exponential memory. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

We need a pseudo-polynomial Mealy machine because it lacks structure.

 \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

Controller synthesis

We should explore novel notions of simplicity, and consider alternative representations of strategies/controllers.

 \hookrightarrow We quickly survey a few ones in the next slides.

Structurally-enriched Mealy machines

Idea:

Controller synthesis

- Augment Mealy machines with data structures: e.g., counters. 19
- Avoid "flattening" structural information about the strategy: more succinct representations, better understandability, and closer to actual controllers.
 - Changes our way of thinking which strategies are complex or not.

¹⁹Blahoudek et al., "Qualitative Controller Synthesis for Consumption Markov Decision Processes", 2020; Ajdarów et al., "Taming Infinity One Chunk at a Time: Concisely Represented Strategies in One-Counter MDPs", 2025.

Randomness

Decision trees

Controller synthesis

- Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- Learn a (possibly approximative) decision tree from a given memoryless strategy.
- More understandable and compact than huge action tables.
- More complex tests may reduce size but hinder readability.

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Toy example: trying to reach the center (0,0) of a 2D-grid.

instead of

X	У	action
0	1	+
0	2	+
		+
-1	0	\rightarrow
-1	1	\rightarrow

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- ▶ Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▶ More understandable and compact than huge action tables.
- ▶ More complex tests may reduce size but hinder readability.

Works well in practice...²⁰

... starting from a given memoryless strategy.

²⁰Brazdil, Chatterjee, Chmelik, et al., "Counterexample Explanation by Learning Small Strategies in Markov Decision Processes", 2015; Brazdil, Chatterjee, Kretinsky, et al., "Strategy Representation by Decision Trees in Reactive Synthesis", 2018.

■ Programmatic representations.

Memory

Strongly linked to the input format of the problem (e.g., PRISM code²¹), hard to generalize.

Models inspired by Turing machines.

- ▶ Powerful but hard to work with.
- → Tentative notion of decision speed.²²

Neural networks.

- Prevalent in RL.
- Hard to understand and verify.
- Can be coupled with finite-state-machine abstractions.²³

²³Shabadi, Fijalkow, and Matricon, "Programmatic Reinforcement Learning: Navigating Gridworlds", 2025.

²³Gelderie, "Strategy machines: representation and complexity of strategies in infinite games", 2014.

²³Carr, Jansen, and Topcu, "Verifiable RNN-Based Policies for POMDPs Under Temporal Logic Constraints", 2020.

Controller synthesis

Focus

Complexity of strategies in controller synthesis.

Controller synthesis

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

High-level picture w.r.t. memory and randomness.

Controller synthesis

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

High-level picture w.r.t. memory and randomness.

→ Many questions are still open!

Controller synthesis

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

High-level picture w.r.t. memory and randomness.

→ Many questions are still open!

Strategy complexity \neq representation complexity.

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

High-level picture w.r.t. memory and randomness.

→ Many questions are still open!

Strategy complexity \neq representation complexity.

Take-home message

We need a proper theory of complexity, and a toolbox of different representations.

 \hookrightarrow Ongoing project ControlleRS.

Thank you! Any question?

Controller synthesis